×
Home Current Archive Editorial board
Instructions for papers
For Authors Aim & Scope Contact
Original scientific article

OXY SENSE-WEAR: A REAL-TIME IOT-BASED WEARABLE PLATFORM FOR CONTINUOUS MULTI-PARAMETER HEALTH MONITORING

By
M.N. Vimal Kumar Orcid logo ,
M.N. Vimal Kumar

Associate Professor, Department of Mechatronics Engineering, Sona College of Technology , Salem, Tamil Nadu , India

M. Pravin Kumar Orcid logo ,
M. Pravin Kumar

Professor, Department of Medical Electronics, Velalar College of Engineering and Technology , Erode, Tamil Nadu , India

Baskar Duraisamy Orcid logo ,
Baskar Duraisamy

Associate Professor, Department of Electronics and Communication Engineering, Karpagam Institute of Technology , Coimbatore, Tamil Nadu , India

A.K. Jaithunbi Orcid logo ,
A.K. Jaithunbi

Professor, Department of AI and ML, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), , Chennai, Tamil Nadu , India

P. Samson Peter Orcid logo ,
P. Samson Peter

Software Engineer, embedUR systems (India) Private Limited , Chennai, Tamil Nadu , India

V.M. Thejashri Orcid logo
V.M. Thejashri

Software Engineer, Capgemini , Bengaluru, Karnataka , India

Abstract

Purpose- The main objective of the proposed paper is to create and implement a real-time wearable health monitoring system based on IoT, i.e., Oxy Sense-Wear, that will enable the constant control of the main physiological parameters, such as ECG, EMG, SpO2, body temperature, and physical activity. The system is aimed at long-term surveillance of the elderly, bedridden, and long-term chronic disease patients, and this allows the patient to identify abnormal health conditions in time and provide proper medical care. Design/methodology/approach-The given device is a soft wearable chest strap with built-in biomedical sensors and powered by an ESP32 microcontroller. Live information is collected, analyzed, and sent through Wi-Fi to a cloud-based server and Android smartphone application. Physiological alerts will activate the buzzer and instant mobile notification when the physiological thresholds are surpassed. The software was used to design and simulate the hardware that was being developed with Proteus and create firmware in the Arduino IDE and the mobile application on Android Studio. Findings- There is a reliable real-time performance as experimental assessment shows heart rate changes with a deviation of +/-2 BPM, SpO 2 values were always in the range of 96-98, and body temperature was monitored accurately between 36.0 o C and 38.8 o C. Fall events were identified with great success at acceleration levels more than 2.5 g, and low false positives. The system recorded a mean alert latency of less than 500 ms and could operate continuously (8 to 12 hours, depending on charge) and thus proved to be viable in the case of personal and clinical remote healthcare monitoring. Originality/value-The proposed Oxy Sense-Wear platform is the first to offer a single multi-parameter sensing, real-time alerting, cloud synchronization, mobile connectivity, and OTA-enhanced platform in a small and wearable size. The work done in the future will be on the implementation of more sophisticated machine-learning algorithms for predictive health analytics, improving the security of the collected data by using encrypted authentication to provide more connection options with the use of the BLE and 5G technology to support the large-scale implementation and integration with the hospital information system. In an effort to be more concise and clearer, this manuscript lays emphasis on system-level insights, comparative appraisal, and quantitative performance assessment rather than a description of the components at a much more detailed level.

References

1.
Miladh A, Wei L. Thermal-aware system-onchip (SoC) design for real-time edge AI in smart healthcare devices. Journal of Integrated VLSI, Embedded and Computing Technologies. 2025;(3):73–8.
2.
Chandrasekaran R, Sadiq T M, Moustakas E. Usage Trends and Data Sharing Practices of Healthcare Wearable Devices Among US Adults: Cross-Sectional Study. Journal of Medical Internet Research. 2025;27:e63879.
3.
Das K, Singh V, Pachori R. Introduction to EEG signal recording and processing. InArtificial intelligence enabled signal processing based models for neural information processing. 2024;1–19.
4.
Caixeiro T, Cale D, Coutinho C. Wearable devices for Health Remote Monitor System. 2022 International Symposium on Sensing and Instrumentation in 5G and IoT Era (ISSI). IEEE; 2022. p. 115–20.
5.
Canali S, Schiaffonati V, Aliverti A. Challenges and recommendations for wearable devices in digital health: Data quality, interoperability, health equity, fairness. PLOS Digital Health. 2022;1(10):e0000104.
6.
Debnath P, Mahmud A, Hossain AK, Rahman SMI. Design and Application of IOT-Based Real-Time Patient Telemonitoring System Using Biomedical Sensor Network. SN Computer Science. 2022;4(2).
7.
Yan F, Liu J, Sun K, Mo W, Xiong B, Guan J, et al. A 0.88-nW Ultralow Gm Tunable Transconductor Based on Bootstrap Body Input for Biomedical Sensors. IEEE Sensors Journal. 2025;25(14):26806–13.
8.
Dashkov D, Liashenko O. MOTION CAPTURE WITH MEMS SENSORS. Advanced Information Systems. 2023;7(2):57–62.
9.
M J, G CPL, S R, K T. Internet of Things (IOT) based Patient health care Monitoring System using electronic gadget. 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE; 2022. p. 487–90.
10.
Majumder S, Roy AK, Mondal T, Deen MJ. Flexible Sensors for IoT-Based Health Monitoring. IEEE Journal on Flexible Electronics. 2025;4(2):63–88.
11.
Najim AH, Al‐sharhanee KAM, Al‐Joboury IM, Kanellopoulos D, Sharma VK, Hassan MY, et al. An IoT Healthcare System With Deep Learning Functionality for Patient Monitoring. International Journal of Communication Systems. 2024;38(4).
12.
Ng CL, Reaz MBI, Crespo ML, Cicuttin A, Bin Shapiai MI, Bin Md Ali SH, et al. A Flexible Capacitive Electromyography Biomedical Sensor for Wearable Healthcare Applications. IEEE Transactions on Instrumentation and Measurement. 2023;72:1–13.
13.
Abdulmalek S, Nasir A, Jabbar WA, Almuhaya MAM, Bairagi AK, Khan MdAM, et al. IoT-Based Healthcare-Monitoring System towards Improving Quality of Life: A Review. Healthcare. 2022;10(10):1993.
14.
Akkaya S. Wavelet-Based Denoising Strategies for Non-Stationary Signals in Electrical Power Systems: An Optimization Perspective. Electronics. 2025;14(16):3190.
15.
Raorane R, Wadhonkar S, Patil S, Borole P. Health Monitoring System using Wearable Sensor Network for Workers in Industries. 2020 International Conference on Convergence to Digital World - Quo Vadis (ICCDW). IEEE; 2020. p. 1–4.
16.
K. S, S. PA, U. P, S. P, V. SP. Patient health monitoring system using IoT. Materials Today: Proceedings. 2023;80:2228–31.
17.
Sardini E, Serpelloni M. Instrumented wearable belt for wireless health monitoring. Procedia Engineering. 2010;5:580–3.
18.
Fang Z, Ouyang S. [Retracted] Nursing Effect of Health Monitoring System on Elderly Patients with Osteoporosis. BioMed Research International. 2022;2022(1).
19.
Senthamilarasi C, Rani J, Vidhya B, Aritha H. A smart patient health monitoring system using IoT. International Journal of Pure and Applied Mathematics. 2018;(16):59–70.
20.
Serhani MA, T. El Kassabi H, Ismail H, Nujum Navaz A. ECG Monitoring Systems: Review, Architecture, Processes, and Key Challenges. Sensors. 2020;20(6):1796.
21.
Yongkun Sui, Chanmin Ahn, Ahn CH. A new smart fall-down detector for senior healthcare system using inertial microsensors. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2014. p. 590–3.
22.
Arefin T, Azad AK. Design and Implementation of an IoT Based Remote Health Monitoring System. Journal of Computer and Communications. 2024;12(11):37–52.
23.
Tamura T. Current progress of photoplethysmography and SPO2 for health monitoring. Biomedical Engineering Letters. 2019;9(1):21–36.
24.
Faisal I, Purboyo T, Ansori A. A review of accelerometer sensor and gyroscope sensor in IMU sensors on motion capture. J Eng Appl Sci. 2019;(3):826–9.

Citation

This is an open access article distributed under the  Creative Commons Attribution Non-Commercial License (CC BY-NC) License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.