×
Home Current Archive Editorial board
Instructions for papers
For Authors Aim & Scope Contact
Original scientific article

DETERMINATION OF CACAO QUALITY USING THE MUMFORD-SHAH FUNCTIONAL ALGORITHM AND IMAGE SEGMENTATION

By
Eduardo Arturo Guillen Bazan Orcid logo ,
Eduardo Arturo Guillen Bazan

Universidad Privada del Norte, Facultad de Ingeniería , Trujillo, La Libertad , Peru

Pablo Cesar Medrano Nina Orcid logo ,
Pablo Cesar Medrano Nina

Universidad Privada del Norte, Facultad de Ingeniería , Trujillo, La Libertad , Peru

Neicer Campos Vasquez Orcid logo
Neicer Campos Vasquez

Grupo de Investigación Desarrollo e Innovación UPN -IDIUPN, Universidad Privada del Norte, Facultad de Ingeniería , Trujillo, La Libertad , Peru

Abstract

One of the major issues in the agricultural industry is cocoa quality determination that may be based on subjective sensory assessment techniques that may cause inconsistency and losses after harvesting. The following research will solve the set of issues by taking the Mumford-Shah functional algorithm with the image segmentation, to evaluate the quality of cocoa at various stages of development: un-ripe, ripe, and diseased. The operation of the segmentation is performed on MATLAB simulation, and the images are processed to measure the primary metrics like how many regions they have, the average area, the average perimeter, and the average eccentricity. The outcomes of the segmentation indicate a clear difference in such measures in the three stages of cocoa growth. In the case of unripe cocoa there are 997 regions and the average region area is 10,509.80 pixels, the average perimeter is 18.40 pixels and the average eccentricity is 0.20. In case of ripe cocoa, there are 768 regions with the average area of 13,997.49 pixels, perimeter of 24.57 pixels, and the average eccentricity of 0.21. The diseased cocoa had 1,705 regions with a mean area of 5,936.61 pixels, mean perimeter of 11.68 pixels and with a mean eccentricity of 0.21. The discussion has shown that the Mumford-Shah algorithm offers an accurate means of grading cocoa quality and has been shown to offer major benefits over the conventional sensory assessment procedures, post-harvest losses and quality control in cocoa production.

References

1.
Arévalo-Hernández CO, Arévalo-Gardini E, Farfan A, Amaringo-Gomez M, Daymond A, Zhang D, et al. Growth and Nutritional Responses of Juvenile Wild and Domesticated Cacao Genotypes to Soil Acidity. Agronomy. 2022;12(12):3124.
2.
Rasgado Bonilla GN, Renard Hubert MC. El dilema de la calidad: valorización del cacao del Soconusco, Chiapas, México. RIVAR. 2022;9(27).
3.
Rossini R, Vega M, Quispe Z, Pérez F.
4.
Heredia Gómez J, Gómez R, J, Sarmiento T, L, Acuña R, et al. Determinación de la madurez de mazorcas de Cacao, haciendo uso de redes neuronales convolucionales en un sistema embebido.
5.
Romero Vergel AP, Camargo Rodriguez AV, Ramirez OD, Arenas Velilla PA, Gallego AM. A Crop Modelling Strategy to Improve Cacao Quality and Productivity. Plants. 2022;11(2):157.
6.
Kang X, Hua C. Multilevel thresholding image segmentation algorithm based on Mumford–Shah model. Journal of Intelligent Systems. 2023;32(1).
7.
Dwivedi V, Srinivasan B, Krishnamurthi G. Physics informed contour selection for rapid image segmentation. Scientific Reports. 2024;14(1).
8.
Moll S, Pallardó-Julià V, Solera M. Segmentation in Measure Spaces. Applied Mathematics & Optimization. 2024;89(3).
9.
Choi HT, Hong BW. Unsupervised Object Segmentation Based on Bi-Partitioning Image Model Integrated with Classification. Electronics. 2021;10(18):2296.
10.
Zúñiga Picado LA, Campos Boza S, Mora Chaves JR, Barboza-Barquero L. Cuantificación del porcentaje de grano quebrado total en arroz (Oryza sativa L.) mediante análisis digital de imágenes. Agronomía Mesoamericana. 2022;51568.
11.
Kiefer L, Storath M, Weinmann A. PALMS Image Partitioning - A New Parallel Algorithm for the Piecewise Affine-Linear Mumford-Shah Model. Image Processing On Line. 2020;10:124–49.
12.
Case N, Vitti A. Reconstruction of Multi-Temporal Satellite Imagery by Coupling Variational Segmentation and Radiometric Analysis. ISPRS International Journal of Geo-Information. 2021;10(1):17.
13.
Fong Amaris WM, Suárez DR, Cortés-Cortés LJ, Martinez C. CAM: a novel aid system to analyse the coloration quality of thick blood smears using image processing and machine learning techniques. Malaria Journal. 2024;23(1).
14.
Shah N, Patel D, Fränti P. Image Segmentation by Pairwise Nearest Neighbor Using Mumford-Shah Model. Frontiers in Artificial Intelligence and Applications. IOS Press; 2021.
15.
Bernal-Catalán E. Detection of Exudates and Microaneurysms in the Retina by Segmentation in Fundus Images. Revista Mexicana de Ingenieria Biomedica;
16.
Horenko I, Pospíšil L, Vecchi E, Albrecht S, Gerber A, Rehbock B, et al. Low-Cost Probabilistic 3D Denoising with Applications for Ultra-Low-Radiation Computed Tomography. Journal of Imaging. 2022;8(6):156.
17.
Cao J, Chen K, Han H. A fractional-order image segmentation model with application to low-contrast and piecewise smooth images. Computers & Mathematics with Applications. 2024;153:159–71.
18.
Huang T, Yin H, Huang X. Improved genetic algorithm for multi-threshold optimization in digital pathology image segmentation. Scientific Reports. 2024;14(1).
19.
Felicetti A, Paolanti M, Zingaretti P, Pierdicca R, Malinverni ES. Mo.Se.: Mosaic image segmentation based on deep cascading learning. Virtual Archaeology Review. 2021;12(24):25.
20.
Shah N, Patel D, Fränti P. k-Means image segmentation using Mumford–Shah model. Journal of Electronic Imaging. 2021;30(06).
21.
Xiao X, Wen Y, Chan R, Zeng T. Image Segmentation Using Bayesian Inference for Convex Variant Mumford–Shah Variational Model. SIAM Journal on Imaging Sciences. 2024;17(1):248–72.
22.
Burrows L, Theljani A, Chen K. On a Variational and Convex Model of the Blake–Zisserman Type for Segmentation of Low-Contrast and Piecewise Smooth Images. Journal of Imaging. 2021;7(11):228.
23.
Sucipto, Wulandari S, Ariani I. Quality risk analysis of cocoa agroindustry: a case study in Pesawaran District, Lampung Province. IOP Conference Series: Earth and Environmental Science. 2021;892(1):012058.
24.
Salazar E, Valenzuela R, Aguilar M, Aranda N, Sotelo A, Chire G, et al. Physicochemical properties and microbial group behavior of postharvest peruvian cocoa bean (Theobroma cacao L.). Enfoque Ute. 2020;(4):48–56.

Citation

This is an open access article distributed under the  Creative Commons Attribution Non-Commercial License (CC BY-NC) License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.