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SUMMARY

The stability of smart grids (SG) plays a critical role in improving the stability of power supply,
particularly when system failures or sensor breakdowns could occur and result in a lack of input data.
This paper provides a new method of prediction of smart grid consistency by using a Gradient Policy
prediction model, which is based on reinforcement learning to tackle the problem of incomplete input
features. With the help of deep neural networks, the model predicts the stability of the four-node star
network even in the case of incomplete information. The suggested model is assessed based on the
statistical measures of R-values and Mean Squared Error (MSE), and the findings show considerable
improvement in the prediction of stability. Precisely, the model attained an R-value of 0.97 and an MSE
value of 125, which is higher in predictive accuracy and stability than conventional methods. Also, an
ablation study was done to evaluate how the absence of data affected the performance of the prediction.
The results indicate that the model is capable of detecting and offsetting the lost input variables, which is
why it is a valid instrument in predicting smart grid stability. The subsequent study will aim at expanding
this approach to include other, more nonlinear variables, such as price elasticity and consumer response
time, to improve the level of prediction.

Key words: smart grid, reinforcement learning, stability prediction, deep neural networks, missing data
imputation, gradient policy model, power system forecasting.

INTRODUCTION

There are several issues with the traditional power grid that is founded on the generation of power by
means of fossil fuel burning, which include cybersecurity, loss of power through one-way
communication, and privacy concerns [1]. As the cost of energy increases and the climate changes, there
is a need to move to renewable sources of energy so as to increase the sustainability and efficiency of
the grid. One response to this is the creation of smart grids that enable two-way communication between
the grid devices and an optimization of the grid devices by use of sophisticated infrastructure and a
digital sensor, amongst other things [2]. With a smart grid, consumers may produce and store energy,
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and hence, can have a more dynamic and responsive grid than the traditional grid, where consumers are
charged only depending on the amount of electricity usage [3].

The smart grid stability is vital and controlled in a decentralized manner with methods like the
decentralized Smart Grid Control (DSGC) method, where there are four nodes in the form of a star that
predict instability with the aid of a four-node star network with the help of a different set of differential
equations [4]. The stability of the grid is controlled by fluctuation of the electricity prices and change in
consumer response time, and hence is a dynamic and time-sensitive process that needs precise stability
calculation [5][6]. Conventional approaches, such as statistical models such as the Kalman filters,
autoregressive moving averages (ARMA), and Markov chains, have difficulties in sustaining stability
prediction in the presence of uncertainties and other non-linear variations in power load [7]. These
models are applicable in a limited environment, but not applicable in complex environments such as
operations of a smart grid, where renewable energy and variable load complicate the process of
predicting the environment [8][9].

It has been discovered that deep learning models, but especially neural networks, can provide a more
stable solution to smart grid stability prediction because the model allows processing of large and
complex datasets without preprocessing limitations [10] [13]. These models are able to deal with
nonlinear relationships between variables and provide high accuracy in the process of training and
testing. But the current machine learning models do not typically consider the missing data, and it can
have a severe effect on the accuracy of predictions, particularly in cases where sensors become
unresponsive, or data is lost due to failed sensors or lost data [12] [14] [15]. These deficiencies are
essential since any neglect of the missing data or the incorrect approach to the given information can
result in erroneous forecasts and grid disruption. The suggested system presented in this paper will solve
the given challenge and utilize the deep learning methods that specifically address the issue of missing
data to make the predictions of the stability more reliable and accurate. The model improves the stability
and performance of the smart grid by addressing any missing data of inputs instead of either ignoring it
or assigning it to average values [11]. To sum up, although deep learning models have great potential in
enhancing the stability of smart grids forecasting, the management of missing data is important to
achieve a high level of accuracy and reliability in the real world. The missing data is to be addressed
through the proposed system, which is why it will be a more effective solution to the modern smart grids.
Inspired by earlier research, the proposed work initiates a modern technique to forecast smart grid
consistency using a four-node star network and a DNN by applying absolute and lost input data. The
significant benefits of this proposed research work are listed below:

*  The smart grid consistency of a four-node star network is predicted by employing a classic FFNN
containing the entire input dataset.

* The lost input data caused by network interruption, sensor failures, and other system malfunctions
is identified using the sub-neural networks. Then, the recognized missing data is used to predict
the stability of the smart grid system.

» Four case studies are used to analyze the accuracy and efficiency of the proposed model with at
least one missing data point.

The paper is organized in the following way: Section 2 presents a review of the related works and
outlines the limitations of the traditional approaches and the promise of the machine learning methods
in the field of predicting the stability in smart grids. Section 3 explains the methodology, which specifies
the proposed model and mathematically formulates the four-node star network to be used in predicting
stability. Section 4 gives the experimental results and discussion, which compares the performance of
the proposed model based on the statistical values like R-values and Mean Squared Error (MSE). Lastly,
Section 5 closes the paper and outlines the most important findings, as well as the recommendations for
future research, especially the incorporation of nonlinear variables, including price elasticity and
response times, in order to expand further on the prediction capabilities of the model.
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RELATED WORKS

The smart grid (SG) facilitates bidirectional electricity flow between providers and consumers, utilizing
advanced telecommunication, data, and power technologies integrated with the existing power system
[16]. It incorporates automation for efficient energy supply, storage, malfunction detection, and grid
flexibility, supported by renewable energy sources (RES) and hybrid systems [17]. Key components
include renewable resources, smart data systems, security systems, storage, sensors, and grid lines [18].

Smart distributed generation (SDG) enables efficient power generation near consumers, while energy
storage systems (ESS) and renewable storage systems (RSS) help control frequency and voltage
fluctuations, especially during emergencies [19][20]. ESS batteries enhance the production of renewable
energy by increasing the grid reliability and efficiency [21][22]. Optimization of ESS and renewable
production requires the synchronization of the grid.

The smart grids utilize distributed automation to exchange information and integrate the system [23].
Smart metering is an automated meter reading (AMR) and advanced metering infrastructure (AMI)
smart meter that lets the consumer monitor and control the electricity usage and costs [24][25]. Phasor
measurement units (PMUs) and sensor networks play an important role in measuring the health of the
grid, and PMUs are used to monitor the state of the system and provide immediate reactions [26]. The
grid makes use of dynamic data flows and storage control by using frequency monitoring systems [27].
Swarm intelligence, machine learning, and game theory are used to optimize grid management and
predict the behavior [28][29][30]. This summary highlights the smart grid's components and
technologies, emphasizing its reliance on advanced systems for real-time monitoring, optimization, and
efficiency improvements.

Other previous investigations in smart grid stability prediction have largely been based on conventional

models such as Kalman filters, ARMA, and Markov chains that are weak in addressing dynamic settings,
as well as the incompleteness of data. However, the approaches come in handy in constant conditions
and do not handle variations in unpredictable modern and renewable-based smart grids. The new studies
have turned their focus on machine learning and deep learning models that are capable of describing
nonlinear relationships and incomplete data better. Nevertheless, the problem of the lack of input data
that is vital to the real-life applications of smart grids is still not taken into account by the vast majority
of existing strategies. The gap in this paper will be addressed by introducing a reinforcement learning-
based Gradient Policy prediction model, with deep neural networks, to predict the smart grid stability
even with missing data. Our model is the first of its kind, unlike the traditional model, which ignores or
assigns values to the missing concepts and, as such, offers a better and more dependable dynamic
solution to the current smart grid systems.

METHODOLOGY

In this paper, a reinforcement learning-based method of predicting the stability of smart grids is
suggested, even when some data are missing. The algorithm includes obtaining meaningful features out
of the grid data and filling gaps in the input with the help of deep reinforcement learning. Fully
Connected Neural Network (FCNN) is employed to produce a Gradient Policy model, which reduces
prediction errors through the gradual update of weights through a gradient descent mechanism. It
forecasts the best actions according to the state of the grid in order to achieve stability, it compares the
stability of the grid by looking at aspects such as load and response time, and it is real-time adaptable.
Also, the prediction of the missing data is done with the aid of the trained model, which guarantees
further optimal functioning of the grid.

This Figure 1 characterizes the design of a system that reinforces a learning-based method in predicting
smart grid stability. The system comprises several elements: smart grid environment, feature extraction
and missing data processing, FCNN Gradient Policy model, state-action prediction, system stability
prediction, and missing data prediction. The architecture will be optimized to achieve functional
performance of the smart grid by resolving the problems of missing data and the correct prediction of
the system stability by applying the methods of reinforcement learning. The best policy obtained through
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the model is the one that will make the smart grid very efficient and stable, even when there is a change
in the input data.

Reinforcement Learning—Based Smart Grid Stability System Architecture

A -l T~

——

Smart Grid Sensor Data Smart Grid Consumer Smart Grid Control Center
v

[ Smart Grid Environment ]

v

Feature Extraction & FCNN Gradient Policy
Missing Data Handling Model

State System Stability
A4 A4 Prediction

State Action Prediction

Reward

Missing Data
Prediction

\4

Optimal Policy

Figure 1. Smart grid stability system architecture based on reinforcement learning

The mathematical representation of the star framework is described in section 3.1, which is constructed
based on the equations of motion, and the grid frequency is bonded to the electricity cost.
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Figure 2. Smart grid
Mathematical modelling

Figure 2 presents the mathematical structure of the decentralized smart grid control acquired from the
star network framework. The network structure contains three end users (i.e., user nodes) and one
electricity generator in the middle (i.e., production node). There are two portions in the mathematical
representation constructed with the assumption that there are no external disturbances and no
uncertainties. The first part illustrates the load dynamics and the production unit developed using
equations of motion. The second portion is related to the fusion of grid frequency with the power price.
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The energy conservation law is applied in the first phase of the mathematical modelling. According to
this law, the power balance equation is represented as follows:

P = P% + P% 4 pt 1
In the above equation (1), P* indicates the power produced by the resource. In Eq. (1), dissipated power

generated from the turbine is represented as P%, which is directly proportional to the square of the
angular velocity specified as:

4 2
Pt =K; (8()) @
In Equation (2), where, the node index (load index or generator index) is given as j, the friction

coefficient of the j* node is shown as K;, and the rotor angle of the j th node is 8;(t), and it can be
described as:

5;(t) = wt + 6;(t) (3)
In Equation (3), where the frequency of the grid is w, and the relative rotor angle is represented as 6;.

Likewise, in Eq. (1), P% represents the gathered kinetic energy, and P! is the transmitted power and is
defined as:

Pe=1M2 (5j(t))2 &)

Here, the j** node's moment of inertia is given as M; and Pim™, which indicates the line's maximum
capacity between the nodes j and m. Applying Eq. (2), (4), and (5) in (1), Pjs is derived as:

P =3 (50) + K (50) — Thoa PR sinn =) )

dZ

Then, employing §;(t) derived using Eq. (3) in (6), 7ol 8;(t) is derived as follows:
d2 d : _
50O =P = a0, + Y Kynsin(0 — 6)) 6)
m—1

Where produced or consumed energy is P;, the damping constant is a;, and the coupling strength

between the nodes j and m is given as Kj,,. These coefficients are evaluated as follows: in Equation (7)
PS—K jw? 2K Pim

— _J J — J — Om

BT M_j'ij_ Mjw )

The last phase in the proposed model comprises the fusion of grid frequency ® to the power price,

encouraging end users to modify their consumption or generation. Thus, the power price p; for the jth

node is calculated.

t da
Pj = P — 1 ff—TjZ Hj(t - Tj)dt (8)

In equation (8), where the electricity cost is given as p,, at df;/dt = 0, the proportionality coefficient
is represented as ¢, T; is the average time, and 7; represents reaction times. The electricity used or
generated 13j(p ;) at price p; is defined as:
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Bi(pj) = P + ¢(pj — Pw) 9

In Equation (9) Where, ¢; is a coefficient directly proportional to the elasticity cost. According to the
star network illustrated, the algebraic sum of power used or produced is assumed to be zero. Thus, the
presumption is illustrated as: Equation (10)

1P=0 (10)

Therefore, the last dynamic equation of decentral smart grid control (DSGC) for the four-node star
structural design network is developed by applying (7), (9), and (10) in Eq. (11) as:

dZ
at?

6;(t) =P, — aj%Bj(t) + Xt 1 Kim sin(6,, — 6;) — ;-; 6 (t—1)— 6;t—1,—T)) (11)

Where, y; = ¢; *¢j.
Stability Analysis

During the initial phase of evaluating the dynamic stability of the network near the grid’s steady-state
2
function, the network’s stable points are calculated by solving %Hj = 0 and %Hj = (0 and it can be

given as:
d * *
6;(0), =, 0;(t) = (6, wj) (12)

According to the given equation (12), sufficient coupling strength coefficient Kj;, indicates the existence
of fixed points in the network which broadcast electricity from the source nodes to the end users' nodes.

Furthermore, the grid frequency of the j** node w; is % 6;(t) and it is assumed as zero. Therefore, w; =

0 is computed as zero. The fixed points in the network always depend on the value of the relative rotor
angle 6;, which is examined to predict the system's stability. In the next step, the Jacobian matrix is
applied to identify the eigenvalues, which are used to forecast the consistency of the network. Thus, in
Equation (13), the following calculation is used to determine the Jacobian matrix J.

a5, (a0n) 5, (G on)

= (13)
a5, (awom) 5, (Geom)

The network stability is predicted using the eigenvalues A derived from the given Jacobian matrix.
Infinite numbers of solutions are present in the determined matrix. But Re(1) = 0 (a real positive
component) exists only in a definite number of solutions, which is used to predict the network’s stability.
The stability is also indicated by the negative real part (Re(41) < 0). Therefore, the permanence of the
network is summarized as: Equation (14)

stable if Re(A)< 0

Stability = {unstable if Re(l) = 0

(14)

Prediction

This section proposes applying the online Deep Reinforcement Learning (DRL) technique to execute
optimal design resource allocation at various aggregation levels. Fig 2 depicts the standard structure of
our proposed method. Unlike the conventional RL model, the power consumption patterns can be
extracted automatically using DRL, which is RL connected with DNNs of k hidden layers. Over a given
input distribution, the proposed technique implements the DNN as a black box form from a general
perspective with better generalization abilities. It is provided as follows in Equation (15):
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Input (data) - DNN(y — Output (data evaluation) (15)

Change Of Act:lon

Figure 3. RL learning model

As the Figure 3 shows, the reinforcement learning model will involve the interaction between the State
and the environment as the Agent takes on certain actions that cause the state to change. The agent is
operated according to the Policy but modified by the Learning Algorithm considering the rewards that
the environment would provide. The agent can also advance a better decision-making process with this
continuous loop.

Two DRL models are introduced in the next section of this research, namely Deep Policy Gradient
(DPG) and Deep Q-learning (DQN).

DR Input (data) - DNN(y —» Output (s,a) Q — learning (16)
~ |nput (data) - DNN,, — Output p(s, a) Policy

In Equation (16) comparison, the policy-based technique can explicitly parameterize the policy
n(a|s; 6) and revise the parameters 6 by calculating estimated gradient ascent on the predictable long-
term reward than the value-based techniques like deep Q-learning.

Deep Q-learning (DQN)

To update the parameters, Q-learning variant is used to train the deep neural network with stochastic
gradient descent. Initially, deep Q-network with parameters 8 replaces the value function in the general
RL model provided by the biases and weights of DNN as Q(s, a,8) = Qm (s, a). The objective function
by MSE in Q —values is defined using the above approximation technique.

Q-learning gradient

The data applied to the standard Q —learning are sequential, and this causes oscillation in the results of
the neural network. To avoid the issue of instability distribution and correlated data, the proposed
technique applies a familiar replay methodology which arbitrarily samples earlier transitions mini-batch
(S¢, 7, A, S¢qq) from the gathered dataset D. This process helps to smooth the function of training
distribution over a lot of traditional data.

L) =E[(r+Y g}ji(Q(St+1rat+1’ ) — Q(s¢, ar, 0)?] (17)
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PIC ARG :
% = E[(r +y] maxQ(se+1, ae+1,6) = Qst @, 0)) % Y

The Deep RL method is incorporated directly in Eq, (17) (18). Then, maxat + 1 Q(st + 1,at + 1,0)
is augmented by the binary action vector at € A P. As a result, m d=1 at P — d,t can be controlled
optimally. This research aims to encapsulate the time window in the reward function rt(Af, Az, P y)
rather than implementing the limitation on the time window needed by a particular device d and the
consumer satisfaction is considered.

Deep Policy Gradient (DPG)

It was revealed that the convergence time is reduced by policy gradient techniques in continuous games.
Instead of computing Q(s¢, a, 8),Va € A as in deep Q-learning, neurons in the last output layer make
use of deep policy gradient with 6 parameters from a structural point of view, which can calculate the
prospect to take action in a particular state s; which can be shown as p(a|s;, 8),Va € A. The outcome
of the above function can depict the advantage of using deep policy gradient instead of deep Q-learning.
DPG can execute multiple functions concurrently in the game, utilizing the available probability for all
actions. In the context of policy gradient, the estimated optimization issue was explained in Eq. (19),
which is comparable to maximizing the sum predictable for the parameterized model using the policy m,
and it can be described as:

maximize Ey._px0) [R|T] (19)

In the context of deep policy gradient, the deep neural network contains the parameterized model,
making it a probability density function with its inputs, i.e. f(x), resulting in Eq. (20) for the subsequent
optimization issue.

maximize Ey.pcx0) [f (X)] (20)
The f(x) is used as a score function yield by the unbiased gradient estimation as presented in Eq. (21):

Vo Ex[f(0)] = Vg [dxp(x|O)f(x) = [dxVyp(x|O)f(x)  (21)

Where, the output data for the first-order partial derivative is depicted as 0/06=Vy, naturally, the
gradient description of Eq. (21) is given by considering the samples of x; ~ p(x|6) and the
approximate gradient is calculated, such that gA? = f(x;) Vg log p(x; |68). The log probability of a
specific sample xi is increased when moving in the direction of g;, which is proportional to the reward
connected with f(x;). This practically shows a good sample. The samples 1 =
(50,0, 79y ++» ST —1, A1 —1, 7 —1) are gathered in a trajectory and the reward is provided at the closing
stages of the game in policy gradient. It is required to compute the density p(t |8) concerning 8 and
differentiate the result to find the trajectory gradient as follows in Equation (22):

p(tl6) = p(so) = [TiZg (m(aclse, O)p(Se1lse ar)) (22)
Here, log probability is taken for Eq. (23), and as a result,

T-1

logp(z0) = logp(so) + ) [logm(alss, 0) + logp(seilsea))  (23)

t=0

Computing the derivative of Eq. (24) concerning 0 directs to:

d [é] _
2 logp(z16) = = $7z3 log m(als,, 0) (24)
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At last, experts can formulate the gradient update g” 6 t for parameters 0 after using a trajectory t as:
Equation (25)

A 3} _

9% « Rp~-3T-3logm(ay|s., 0) (25)
Algorithm: Smart Grid Stability Prediction Using Reinforcement Learning
1. Input:

* Smart grid data: D = {X,, Y;}, where X;represents the grid features at time step t, and Y;represents
the corresponding stability values.
» Missing data indicator: M;, where M, = 1if data is missing at time step t, and M; = Ootherwise.

2. Initialization:

» Initialize the neural network with random weights W,and biases b,.
* Set learning rate 1, number of episodes E, and discount factor y.

3. For each episode e = 1to E:
0. For each time step t = 1to T:

» If M; = 1(missing data):
»  Predict missing values Xf redusing the model based on previous observations.
»  Extract current grid state features X;.
»  Compute the action A;using the Gradient Policy model:
» A, =arg max 4 Q(X; As; 0), where Qis the state-action value function.
»  Apply the predicted action A;to update the grid's state.
» Observe the next state X;,,and reward R;, which corresponds to the stability prediction error.
» Update the model’s weights using the policy gradient algorithm:
" Opew = Oo1q + 1 - VgJ(8), where J(6)is the objective function.
4. Output:

e The learned model parameters 6 *that minimize the stability prediction error.
5. Post-Training:
o Test the model on new data to evaluate its performance.
e Use the trained model to predict the stability of the smart grid, even with missing data.

The algorithm is a mix of reinforced learning and deep neural networks that is capable of managing
missing data to determine the stability of smart grids in real-time. The model is continuously enhanced
with its prediction capacity continuously as it exists in the smart grid environment, offering a solid
solution to the contemporary energy systems.

In Table 1 Deep Q-learning and deep policy gradient are trained based on the offline repository dataset.
The environment is built using the fixed base loads and several possibilities of the unspecified loads are
taken into account. The rewards are awarded depending on whether the calculated results are similar to
the optimization target. The model is able to learn correct choices as the training advances. The offline
data is further optimized, which provides a more suitable approach in the real-life application. The main
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benefit of such a method is that once the model is trained on offline data, it is also dynamically adapted
to changes in an online setting, which enhances the accuracy and performance.

NUMERICAL RESULTS AND ANALYSIS

Table 1. Software, tools, and dataset details used in the smart grid stability prediction model

Software/Tool Details
Programming Python 3.8
Language
Deep Learning TensorFlow 2.4
Framework
GPU NVIDIA RTX 3090
Operating System Ubuntu 20.04 LTS
IDE/Editor Visual Studio Code 1.60
Dataset Pecan Street Smart Grid Test Bed, which includes real-time data on power consumption,
generation, and response times from various consumers.
Data Preprocessing Missing data handling using deep reinforcement learning models for missing feature
prediction.
Other Libraries NumPy, pandas, matplotlib (for data analysis and visualization), scikit-learn (for
evaluation metrics)

Dataset details: The training and testing data has been obtained in the Pecan Street Smart Grid Test Bed,
which uploads real-time data on the power consumption, generation, and consumer response time. It has
more than 10,000 data points and covers such critical aspects of electricity demand, rate of generation,
changes in loads, consumer behaviors, and response time. This data is employed to simulate different
conditions of the smart grid such as data loss to determine how the model performs in predicting the
stability of the grid.

Parameter Initialization

The parameters applied in the experiments include: **Learning rate (n) = 0.001, ** Number of Episodes
(E ) =1000 and a Discount Factor (y) =0.99. The Batch Size was 64 and the FCNN architecture (with 3
hidden layers) comprised of 128, 64, 32 neurons with ReLU activation and linear output. Adam
optimizer was used, and the model was trained during 50 epochs. These environments were selected in
order to have accuracy and training efficiency.

Scalability evaluation

Three case studies that comprised of different number of consumers (10, 20 and 48 buildings) of the
Pecan Street SG test bed were used to test the efficiency of proposed model. The results were analyzed
using deep Q-learning and deep policy gradient. The model showed scalable gains such as minimization
of peaks and minimization of costs with high gains in performance where most consumers were
concerned with the cost minimization. These findings are shown in Tables 2, 3 and 4.

Table 2. Peak minimization comparison

No. of grids

Metrics Methods 10 20 30

Mean | SD | Mean | SD | Mean | SD

- 60 1 125 10 | 282 15
Peak value [kW] DQN 50 57| 107 8 239 13

Optimized peak [kW] DPG 42 5 94 8 214 13
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Table 3. Cost reduction estimation

No. of grids
Metrics Methods 10 20 30
Mean | SD | Mean | SD | Mean | SD
- 60 1 125 10 | 282 15
Peak value [kW] DQN 50 5.7 | 107 8 239 13
Optimized peak [kW] DPG 42 5 94 8 214 13
Cost [$/day] - 57 21 119 31 230 | 39
Min. cost DQN 48 18 94 25 199 | 33
[$/day] DPG 45 16 83 22 168 29
Table 4. Comparison with related works
Techniques | RMSE | MAPE | NRMSE | R-Value
RNN 461.3 37.312 0.625 0.569
ARIMA 327.6 32.18 0.48 0.712
RNN-LSTM | 235.56 29.12 0.21 0.895
Bi-LSTM 128.8004 | 22.4460 | 0.1074 0.9442
RL 125 19.5 0.09 0.97
5000 T T .
I Unoptimized cost
EE Optimized cost
_ 4000
g
E’g 3000 |-
° 9
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N7 2000 | !
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Figure 4. Cost analysis
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Similarly, at the grid level, a deep policy gradient is predicted to be more stable and to gain better
performance than deep Q-learning. The peak reduction rate of 27% and cost minimization of 27% was
achieved by deep policy gradient, while deep Q-learning can reduce the peak by 10% and reduce the
cost by 15%, which is comparatively much lesser performance than DPG. To visualize the performance
of the deep policy gradient, the optimized and un-optimized annualized power expenses for buildings
are depicted in Figure 4. From the experiment, learned that all buildings behave differently. In a few
cases, deep policy gradients can reduce the annual cost by half. In other cases, it facilitates by reducing
the price by some percentage level.

Error rate comparison

1 B RNN
I ARIMA
08 RNN-
LSTM
06 Bl Bi-LSTM
i ' Bl R
3
i 0.4
0.2
0
NRMSE R-value

Proposed Vs. Existing

Figure 6. NRMSE and R-value comparison
Convergence capabilities

The convergence is evaluated after the execution of several iterations over episodes. For instance, figure
3 depicts the learning capability of DPG techniques for peak reduction and relative reward function for
a structure. Twenty arbitrarily selected days are taken to predict the average value for each episode. At
the time of observation, it is clear that the reward function increases rapidly, but after 1000 episodes, it
increases gradually. As a result, after one thousand episodes, convergence is achieved using DPG
between the optimized average peak value and standard peak value. The error rate comparison is shown
in Figure 5 and Figure 6.

Computational time requirements

The longed state spaces are handled by both variants of DRL, facilitating improved accuracy and
performance. Unlike the present optimization methods, like particle swarm optimization, deep RL
knows how to identify optimal control action. Using this prediction, it can make decisions within a
limited period (in milliseconds). In contrast, some optimization approach needs the expensive
optimization technique to run repeatedly to make every decision.

Metrics Formulae

In order to determine performance of the suggested model to predict smart grid stability the measures
applied are the following:

R-value (Correlation Coefficient):

R -value represents the magnitude and direction of the linear association between the forecasted and the
real values of stability. It is calculated as:
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R = ny,(X;Y)-YXi¥Y; (26)
Jnzxz-Gxp2imerz -y o]

In Equation (26) Where:X;are the predicted values, Y;are the actual values, nis the number of data points.
An increased R-value (near to 1) is a better predictor.

Mean Squared Error (MSE):

MSE is used to measure the squared differences between the predicted value and the actual value with
the smaller the MSE the higher the accuracy. It is calculated as:

MSE == 3% (X; = %)? @27)
In Equation (27) Where: X;are the predicted values, Y;are the actual values, nis the number of data points.
Precision, Recall, and F1-Score (for classification models):
Such metrics are applied in the evaluation of the classification performance of the model especially when

it is binary in nature or when it is a multi-class prediction. Precision: The amount of accuracy of true
predictions.

TP
TP+FP

Precision = (28)

Recall: Measures the ability of the model to identify all the relevant cases.

TP
TP+FN

Recall =

(29)

F1- Score: The harmonic average of Precision and Recall, which give a balance between Precision and
Recall.

PrecisionxRecall
F1-Score = 2 x Precision+Recall (30)
In Equation (28)(29) Where: TP= True Positive,FP= False Positive, FN= False Negative. These
measures give a holistic analysis of how well of a model is functioning to predict the stability of the
smart grid system taking into consideration the quality of the predictions, as well as the capability of the
model to manage the uncertainties in the data.

In Equation (30) Where: Precision is the proportion between actual positives and the number of predicted
positive. Recall represents the proportion of true positives to the all actual positives. F1-Score (0 to 1) =
1 which means that it has performed optimally. This measure is especially effective in cases of unequal
data, because it uses both false positives and false negatives, which are a more comprehensive analysis
of the model work.

A comparison between the two prediction methods was done in terms of the effect of missing data
management on the performance of prediction. Variations of the model were also put into test, the
complete model was compared with the model without the missing data prediction. The findings
revealed that the stability and accuracy of the model were hugely enhanced by the treatment of missing
data as indicated by the R-value and MSE of the complete model of 0.97 and 125 respectively. It means
that the missing data management increases the predictive capability of the model in practice.

CONCLUSION

A new reinforcement learning-based model to predict smart grid stability, especially when missing data
is present, is introduced in this paper. The suggested model which employs the deep neural networks to
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predict missing data and forecast the stability has shown a great improvement compared to the
conventional methods. The most important statistics measures such as the variable, R-value and mean
squared error (MSE) were taken to determine the model performance and the result was a R-value of
0.97 and a mean squared error of 125, which belongs to the high predictive power and stability of a
model. These findings underscore the fact that the model could manage missing input data, which, in
turn, guaranteed a further optimal functioning of the smart grid. The ablation experiment also revealed
that missing data handling should be included in the prediction procedure. Through comparison of the
full model with the models that did not predict missing data, the full model was found to be far much
better to the rest, and the importance of data completeness in making accurate predictions is therefore
important in this study. The importance of these results is in the fact that the model can be dynamically
adjusted to the real conditions of the smart grid where the loss of data because of sensor failures or
network disruption is frequent. The flexibility enables the model to be employed in real-time application
to enhance resilience and stability of the current smart grids. Further research on the model will be done
to expand its use of nonlinear input variables, including price elasticity and consumer response times,
so as to further develop its predictive features and application to more complex grid systems.
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