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SUMMARY 

High-precision crop type mapping is fundamental for agricultural monitoring, food security assessment, 

and sustainable land management. Recent breakthroughs in Earth observation and machine learning (ML) 

have greatly enhanced the potential for satellite data to capture crop phenology, spatial variability, and 

temporal variations. This paper conducts a systematic review of over 30 satellite-based crop type mapping 

studies, covering satellite data sources, multi-sensor fusion techniques, and classification models. The 

quantitative meta-analysis of the reviewed studies indicates that the fusion of optical and synthetic 

aperture radar (SAR) data can enhance overall classification accuracy by 0.2% to 0.6%, especially in 

areas with high spatial variability and frequent cloud cover. In addition, ensemble learning and deep 

learning models have been found to outperform conventional classifiers, with substantial improvements 

in both accuracy and robustness for various agro-ecological zones. Pixel-level fusion methods have been 

found to be the most effective means of enhancing crop type discrimination and area estimation.  

Key words: satellite crop classification, multi-sensor data fusion, optical–SAR integration, time-series 

vegetation indices, deep learning in remote sensing, cloud-based crop monitoring. 
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INTRODUCTION 

High-precision crop type mapping is an essential component of modern agriculture, allowing for 

efficient crop phenology monitoring, food security analysis, and sustainable land use. During the last 

decade, the Earth observation (EO) technology development has led to a significant increase in the 

availability, variety, and temporal resolution of satellite imagery [1]. Classical classifiers, such as 

Support Vector Machines (SVM) and Random Forests (RF), have shown high performance in high-

dimensional feature spaces, while deep learning models, including Convolutional Neural Networks 

(CNNs), Recurrent Neural Networks (RNNs), and attention models, are highly effective in modeling 

spatial, temporal, and multi-sensor relationships [2]. Furthermore, cloud computing platforms, such as 

Google Earth Engine, have facilitated large-scale and near-real-time crop mapping, allowing for 

applications ranging from field to global scales [3]. 

Recent studies have demonstrated the advantages of multi-sensor fusion, especially the combination of 

optical and SAR images, which improves crop type classification accuracy and overcomes the 

limitations of cloud contamination. However, there are still challenges in sensor fusion, model 

transferability, ground truth scarcity, and the trade-off between model complexity and practicability [4]. 

This review systematically integrates more than 30 recent studies on crop mapping, analyzing sensor 

data sources, feature representation techniques, fusion techniques, and machine learning algorithms [5]. 

Following are the main contributions: 

• Systematic integration of more than 30 recent studies on crop type mapping, comparing different 

sensors, fusion schemes, and machine learning techniques. 

• In-depth analysis of fusion and classification schemes, with a special focus on pixel-level fusion 

and its practicability. 

• Research gap identification, including sensor fusion, ground truth scarcity, and model 

transferability. 

The rest of this paper is structured as follows. Section 2 presents a literature review on crop images, 

focusing on radar and optical satellite data. Section 3 introduces a new Review Methodology section. 

Section 4 presents an overview of data fusion techniques and machine learning methods, while Section 

5 offers a comparative assessment of accuracy levels and new trends. section 6 presents a comparative 

evaluation of the proposed model with existing state-of-the-art techniques to assess its effectiveness and 

reliability. Section 7 addressing these gaps and challenges will pave the way for developing more 

efficient systems in future research. Finally, Section 8 concludes this paper by summarizing the main 

findings and future research avenues for crop mapping applications. 

SATELLITE DATA SOURCES 

Radar and Optical Data 

Its effectiveness stemmed from the correlation between plant physical characteristics, phenology, sensor 

measurements, making it valuable for crop analysis. With the advent of radar data, researchers have 

turned their attention to the synergies between the two sources and the connection between 

backscattering and crop attributes [6].  

(Table 1) Sentinel-1 SAR and Sentinel-2 multispectral data are the two most used satellite datasets as 

they can sense different aspects of crop monitoring with their simultaneous high temporal rates of return 

and open access provision [7]. Pixel-level fusion is the most common method because it combines 

spectral, backscatter and texture features in an efficient way. Regarding classifiers, Random Forest is 

the most adopted algorithm, being robust with high-dimensional features and lack of training samples 

followed by Support Vector Machines and more recently deep learning models [8]. These results 

illustrate a tradeoff between methodological reliability, data richness, and operational feasibility in large 

scale crop mapping [9].  
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Table 1. List of satellite datasets and methods used 

Author (Year) Method/Approach Satellite Dataset(s) / Sensor(s) 

Cai et al., 2018 Time-series analysis with machine 

learning 

Landsat 5, 7, 8 

Mansaray et al., 

2017 

Optical and microwave remote 

sensing analysis 

Sentinel-1A (VV, VH polarization), 

Landsat 8 (OLI) 

Kussul et al., 

2018 

SAR and optical imaging over 

multiple time periods 

Landsat-8, Sentinel-1A (C-band, 

2015–2016), Sentinel-2 

Forkuor et al., 

2015 

Sequential masking classification TerraSAR-X, RapidEye, Sentinel-

1A SAR 

Foerster et al., 

2012 

Phenological data and spectral-

temporal profiling 

35 Landsat images 

Skakun et al., 

2016 

Multi-temporal crop classification Landsat 8, Radarsat-2 (C-band) 

Zheng et al., 

2015 

Time-series NDVI analysis 24 scenes from Landsat 5 TM and 7 

ETM 

Sarzynski et al., 

2020 

Combination of radar and optical 

imagery via GEE 

Landsat 8, SAR 

Hu et al., 2021b Random Forest supervised 

classification 

Sentinel-1 and Sentinel-2 

Sun et al., 2022 Deep learning Sentinel-1 and Sentinel-2 

Kaplan et al., 

2023 

Estimation of vegetation variables Sentinel-1 and Sentinel-2 

Habibie et al., 

2024 

Land cover classification using GEE 

and CNN1D 

Sentinel-1 and Sentinel-2 

 

REVIEW METHODOLOGY AND FEATURE EXTRACTION  

 NDVI is a valuable indicator of the presence of photosynthetically active plant life. Traditional 

approaches of parametric and nonparametric classification from an image had produced inefficient 

outputs [10]. As a result, phenological data is required to create a unique growth model for each crop 

type based on spectral temporal profiles [11]. They enable the extraction of physiologically relevant 

measures.  

 

Figure 1. Overall architecture of the proposed soft computing-based crop mapping framework 
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Phenological properties have been used to characterize cultures in several recent research [12].  for 

example, exploited spectral features at specified dates to derive phenological metrics that revealed 

interior physiological properties. These variables allow decision rules to be built to do an autonomous 

crop extraction. (Figure 1) The methodology flowchart presents a logical organization guiding the 

review from data collection to synthesis. The review initially describes the sources used, such as SAR 

and multispectral datasets to provide a knowledge about sensor performance and limitations [13]. The 

review then discusses feature extraction, involving spectral indices, backscatter and texture features that 

allow efficient depiction of the information. Based on these data fusion inputs, different strategies of 

data fusion are systematically surveyed focusing on pixel-level methods to combine multiple sources of 

information [14]. The structure then leads the discussion to classification and machine learning solutions 

that directly depend upon feature quality and fusion strategy. Lastly, the review concludes with 

accuracy comparison of different studies, trend‐pattern identification, and research gap recognition 

[15][16][17][18][19][20].  

Vegetation Indices 

The spectral variations in vegetation response across various bands are exploited by NDVI which are 

described in (1) – (3): 

𝑁𝐷𝑉𝐼 =  (𝑁𝐼𝑅 − 𝐼𝑅) / (𝑁𝐼𝑅 + 𝐼𝑅)                                                                                                               (1) 

𝑆𝐴𝑉𝐼 =   (1 +  𝐿)  ∗  (𝑁𝐼𝑅 − 𝑅) (𝑁𝐼𝑅 + 𝑅 +  𝐿)                                                                                       (2) 

𝑀𝑆𝐴𝑉𝐼 = [2 ∗ 𝑁𝐼𝑅 + 1 − √ (2 ∗  𝑁𝐼𝑅 + 1)2 −  8 ∗  (𝑁𝐼𝑅 − 𝑅𝐸𝐷]/2                                             (3) 

The crop cycle is statistically represented by the indices that display temporal fluctuations [21]. For 

charting agricultural phenological development, the NDVI is still the most often used indicator the 

Enhanced Vegetation Index defined in Equation (4).   

𝐸𝑉𝐼 =     2.5 ∗  ((𝑁𝐼𝑅)  −  (𝑅) / 𝑁𝐼𝑅 + 6 ∗ 𝑅 − 7.5 ∗ 𝐵 +  1                                                                 (4) 

The models that follow concentrate on biomass productivity and vegetation height. Crop-specific 

phenological dynamics are captured using the Rice Mapping Index described in Equation (5):   

 𝑅𝑀𝐼(𝑁𝐼𝑅) = 𝑁𝐼𝑅1(𝐻𝑎𝑟𝑣𝑒𝑠𝑡) − 𝑁𝐼𝑅1(𝑡𝑟𝑎𝑛𝑠𝑝𝑙𝑎𝑛𝑡𝑖𝑛𝑔)𝑁𝐼𝑅1 + 𝑁𝐼𝑅1(𝑡𝑟𝑎𝑛𝑠𝑝𝑙𝑎𝑛𝑡𝑖𝑛𝑔)           (5) 

[22] derived RVI for cotton crop growth phenology. Structural crop growth characteristics derived from 

SAR backscatter are represented by the Radar Vegetation Index in Equation (6): 

𝑅𝑉𝐼 =
4𝜎𝑣ℎ

𝜎𝑣𝑣 + 𝜎𝑣ℎ
                                                                                                                                                 (6) 

PIXEL-LEVEL DATA FUSION 

Based on a pixel basis, image fusion combines optical and radar data to improve textural and spatial 

resolution while preserving spectral accuracy [23]. Principal component analysis, intensity-hue-

saturation, wavelet transforms, and hybrid approaches are the most used fusion techniques. These 

methods have been categorized based on component substitution, multi-resolution, and hybrid 

techniques. Further this enhances its improved fusion methodologies [24]. 

Component Substitution Techniques 

PCA is a commonly used method for pixel level data fusion that effectively minimizes data redundancy 

while preserving key information [25]. 
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In agricultural areas, HPF fusion performs better than other pixel-level fusion approaches. In another 

study by [26], it was found that while the HPF method improves wheat classification accuracy, it doesn't 

enhance vineyard classification accuracy. Based on the combination of Landsat and RADARSAT 

images reveals finer landscape details compared to using each dataset independently [27]. Specifically, 

employing the BT approach results in an image that effectively distinguishes between forested areas and 

cultivated rice fields [28].  

Multi-Resolution Analysis 

Each level of the pyramid is linked to a channel with reduced resolution and corresponding spatial 

characteristics. Wavelets and curvelets are two of the most utilized multi-resolution analytic tools. The 

fusion method based on wavelets combines spatial information from SAR imaging with optical images, 

minimizing distortion of spectral information. PALSAR data. could be a very viable technique for urban 

regions, but not for rural areas. While the implementation of DWT enhances the identification of wheat 

fields in contrast to different land cover categories like residential or pasture, its impact on the overall 

accuracy is relatively minimal with alternative [29]. 

The benefit of image‐fusion approaches in agricultural remote sensing is highly dependent on similarity 

of crops, atmospheric limitations, resolution of sensor and heterogeneity of landscape. When crop 

classes are spectrally similar (e.g., cereals at similar phenological stages), feature-level and model-

based fusion, more precisely deep learning based on spectral–temporal signatures can outperform pixel-

level fusion by capturing subtle textural and temporal variation. In the case of persistent cloudy 

conditions, SAR–optical fusion and spatiotemporal fusion methods are more effective since radar data 

provides all-weather continuity while optical data maintains crop biophysical sensitivity. For high spatial 

detail demands (field-scale management), separation methods (including pan-sharpening and spatial–

spectral fusion) work well in relatively homogeneous landscapes, and object-based or deep neural fusion 

is better for complex, heterogeneous landscapes when mixed pixels dominate. In general, pixel-level 

fusion can adapt to uniform high-quality image conditions where the traditional pixel level is suitable 

for crop mapping [30]. 

MACHINE LEARNING & DEEP LEARNING MODELS 

Various categorization algorithms are used in crop mapping. Support Vector Machine, Decision Tree 

(DT), and Random Forest (RF) classifiers have been the primary options for identifying remote sensing 

images in recent years [31] had improved the crop classification accuracy of multiple algorithms such 

as weighted KNN subspace KNN (ensemble classifier) cubic SVM quadratic SVM Median Gaussian 

SVM. To generate spatial-spectral embedding for each date pixels undergo processing by shared 

consecutive MLPs. It obtained an overall accuracy of 0.93. [32] used Decision Tree Classifier and 

Random Forest algorithm to classify crop type. 

Random Forest and Deep Neural Networks to employ deep learning methods in modelling the early and 

late sowing of cotton and soybean crops. [33] utilized LSTM and BiLSTM models, which demonstrated 

significantly faster processing speeds with GPU acceleration compared to the methods of traditional 

machine learning classification. In a UNet model trained in Arkansas using CDL and Landsat data was 

transferred to US and China locations to map corn and rice. They discovered that spectral values differed 

for the same crops among regions, making direct model transfer difficult. They developed an approach 

to improve data consistency and thereby effective transfer of models for crop mapping globally, by 

adjusting windows to better match up sow and growth phases specifically in target areas of interest [34].  

High-resolution reflectance dataset for the Huaihe basin by combining Sentinel and Landsat data using 

Google Earth Engine (GEE). Using this dataset, the accuracy was 88.87% (Kappa 0.78; Mean Kappa 

0.775) and a phenological type-based crop intensity map was developed. This dataset has the potential 

to improve grain yield prediction and assessment of ecosystem impacts on a regional scale. A method 

of contrastive learning was introduced to combine the representations. To instill a more compact model, 

the partial weight-sharing principle has been introduced and built a more efficient late feature-level 

fusion network. This approach facilitated better feature discrimination for different input sizes over 



Benazir Meerasha, et al: Advanced soft ……  Archives for Technical Sciences 2025, 34(3), 1297-1306 

 

 Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34           1302 

conventional supervised approaches.  A study analyzed deep learning techniques in wheat farming to 

suggest an ontology-centered knowledge management platform. This system aims to facilitate the 

cataloging of objectives investigated, preprocessing methods, models used, datasets employed, and 

outcomes obtained. They conclude that deep learning provides a cost-efficient, robust, and accurate 

alternative in the measurement of wheat traits compared to traditional methods and a step forward in 

high-throughput phenotyping for future research. [35] evaluated three vegetation detection methods: two 

were deep learning-based models and one was an object-based NDVI-ML method combining computer 

vision and machine learning. Their results further indicated NDVI-ML approach provided superior 

performance compared with deep learning models including DeepLabV3+ with RGB bands. However, 

they found that the differences in types of images of training and testing data made it hard for deep 

learning approaches to achieve good results. Nevertheless, a comprehensive analysis of deep learning 

techniques for environmental RS has been released. MODIS, which has a higher temporal resolution 

than Landsat (a 16-day cycle) and can penetrate clouds, is noted as the preferred RS sensor and NDVI 

is the most used feature.  

Equally important is the deployment of existing technological tools. Integrating Sentinel-1 backscatter 

GRD into GEE streamlines the process by removing the need for humans to handle and store large 

datasets and allowing algorithms to work directly with the data.    

An overall accuracy 91% with a kappa coefficient 0.90 was achieved at Coalville, UK study area. In 

another study by [36], corn and soy were the identified crops.  

PERFORMANCE COMPARISON 

The findings underscored the advantages of utilizing Shortwave Infrared (SWIR) bands instead of the 

commonly used v Near Infrared (NIR) and visible bands in crop classification and it exhibits a 10 to 

15% increase in accuracy [37]. The optimal band combination was determined to be the green band. In, 

crop classification included Mature Rubber, Shrub/Orchard, Forest, Mangrove, Palm Oil, Paddy field 

and Built-up area. Compared to Landsat data alone, which produced accuracy between 91.20% and 

91.93%, the combination of Landsat and SAR data produced the best unbiased worldwide accuracies, 

ranging from 92.96% to 93.83%. (Ajadi et al., 2021), focused on soybean and corn classification 

classified cotton crop combining Sentinel1 and Sentinel2. 

Table 2. Comparative analysis of existing methods 

Literature Survey Model / Method Overall Accuracy (%) COE (%) 

Yang et al., 2021 SVM 85.98 14.02 

Jayatrao Mohite et al., 2020 RF    13.55 

Jayatrao Mohite et al., 2020 DNN 89.15 10.85 

Ramalingam et al., 2019 Unsupervised Classification 76.24 23.76 

Kaplan & Rozenstein, 2021 Linear Regression 70.00 30.00 

Luo et al., 2021 RF 89.75 10.25 

Ge et al., 2021 U-Net 87.00 13.00 

Yuan et al., 2023 Self-Supervised Learning 88.17 11.83 

Fu et al., 2023 ML (TWDTW) Method 90.74 9.26 

Habibie et al., 2024 CNN 1D 78.00 22.00 
 

RESEARCH GAPS & CHALLENGES 

In general, the literature in Table 2 reflects a trend of performance enhancement from conventional 

statistical and classical machine learning methods to deep learning models. Conventional approaches 

like linear regression (70%) and unsupervised classification (~76%) have a limited ability to capture the 

complex, non-linear relationships that exist in satellite time series data. Supervised machine learning 

algorithms like SVM (85.98%) and RF (86.45-89.75%) provide better performance, especially when 

adequate training data and proper feature representation are considered [38]. 
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Figure 2. Comparative performance analysis: accuracy Vs error comparison 

Deep learning models further improve the classification accuracy by exploiting spatial, spectral, and 

temporal relationships in multi-source data. Models like DNN (89.15%), U-Net (87%), self-supervised 

learning (88.17%), and TWDTW-based ML (90.74%) always perform better than most traditional 

methods. However, the improvement in accuracy over optimized RF and SVM models may be marginal 

in homogeneous landscapes and simple classification problems. However, the relatively poor 

performance of CNN-1D in some studies clearly indicates that the benefits of deep learning are still 

highly sensitive to model architecture, data requirements, and the size of the training dataset [39]. Figure 

2 is a comparative graphical representation of the overall classification accuracy (%) of different 

machine learning and deep learning models as reported in the literature. The comparison also 

encompasses traditional methods like Linear Regression (70%) and Unsupervised Classification 

(76.24%), ensemble learning techniques such as Random Forest (85.98-89.75%), deep learning 

techniques including DNN (89.15%), U-Net (87%), and CNN 1D (78%), and advanced techniques such 

as Self-Supervised Learning (88.17%) and the ML-based TWDTW approach (90.74%). The 

Classification Error (COE), calculated for different machine learning and deep learning techniques [40]. 

Lower values of COE represent better classification accuracy, and the TWDTW-based ML technique 

has the lowest error rate (9.26%), followed by Random Forest and deep learning techniques 

CONCLUSION 

This review illustrates a ranking of crop classification accuracy, emphasizing the evolution from 

conventional statistical and machine learning techniques to sophisticated deep learning models. 

Traditional approaches, such as linear regression and unsupervised classification, indicating a lack of 

ability to capture complex relationships in satellite imagery. Supervised machine learning algorithms 

exceed 88% accuracy with some studies reporting accuracies above 90% in multi-sensor or dense time-

series crop classification tasks. The importance of multi-sensor fusion is illustrated to be essential for 

accurate crop mapping in challenging scenarios like cloud-contaminated areas or heterogeneous regions. 

Pixel-level fusion enables efficient processing of large-scale crop classification datasets. Despite such 

achievements the variability of model performance based on regions and seasons, and the trade-off 

between accuracy, interpretability, and efficiency. Future studies should focus on providing standardized 

benchmark datasets and statistically sound evaluation methodologies, as well as efficient and 

interpretable deep learning models. Moreover, self-supervised and transfer learning methods can 

alleviate the need for large amounts of labeled data, especially in data-scarce areas. Cloud-native 

platforms with multi-sensor fusion and real-time analytics capabilities will play a critical role in the 
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development of scalable crop monitoring systems for sustainable agricultural practices and global food 

security. 
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