
Bhavani, P. et al: A Robust feature engineering ……Archives for Technical Sciences 2025,34(3),815-832

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34 815

ISSN 1840-4855

e-ISSN 2233-0046

Original scientific article

http://dx.doi.org/10.70102/afts.2025.1834.815

A ROBUST FEATURE ENGINEERING ARCHITECTURE

INCORPORATING HYBRID SAMPLING AND

SEMANTIC-STRUCTURAL CODE AUGMENTATION

P. Bhavani1*, Dr. N. Danapaquiame2

1*Research Scholar, Department of Computer Science and Engineering, Sri Manakula

Vinayagar Engineering College, Puducherry, India. e-mail: bhavani.smvec1@gmail.com,

orcid: https://orcid.org/0009-0003-7729-3032
2Professor and Head, Department of Computer Science and Engineering, Sri Manakula

Vinayagar Engineering College, Madagadipet, Puducherry, India.

e-mail: n.danapaquiame@smvec.ac.in, orcid: https://orcid.org/0000-0001-6989-0708

Received: September 22, 2025; Revised: October 29, 2025; Accepted: December 03, 2025; Published: December 30, 2025

SUMMARY

The sophistication of the contemporary code has augmented defect prediction (SDP) with vital concerns

like severe imbalance in classes, high redundancy of features and failure of conventional techniques to

gain the rich semantic and structural context of a source code. The model suggested within the current

paper is HDA-SE-GFF that has Semantic-Enriched Graph Feature Fusion. In order to address the data

imbalance, a hybrid sampling method, which is a mixture of SMOTE and Tomek links, is applied to

produce synthetic minor samples without duplicating the majority data on the edge of choice. The Stacked

Denoising Autoencoders (SDAEs) store deep features so as to achieve noise-invariant features.

Meanwhile, code context may be acquired through translating Abstract Syntax trees (ASTs) and Program

Dependency graphs (PDGs) to semantic-structural embeddings. The combination of these deep and

structure features is with a weighted interpolation factor (or -) and is categorized by a Softmax layer.

HDA-SE-GFF was trained in a 5-layer auto-encoder with 256-512 hidden cells, 20 % dropout and a

learning rate of 5. The architecture, according to the experimental results of object-oriented software

repositories, is much superior to baseline methods in terms of classification accuracy and model

robustness. The key lessons learned include that the hybrid sampling approach is an effective method of

alleviating the bias of the majority classes and at 80-300 edge-density code behavior, the combined

representation of AST and PDG embedding. HDA-SE-GFF model suggests scaling and precise quality

assurance procedure into the quality of software, an effective method of bridging the disassociation

between the unmanaged process of feature learning and code structural examinations of large-scale

systems.

Key words: defect prediction, feature engineering, autoencoders, SMOTE, code semantics, software

quality.

INTRODUCTION

The modern software systems become increasingly complex; defect prediction is a crucial task for

supporting the quality and reliability of software products [1]. Some existing defect prediction

approaches are useful, and almost all of them are based on the classical approach, which has several

Bhavani, P. et al: A Robust feature engineering ……Archives for Technical Sciences 2025,34(3),815-832

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34 816

drawbacks, such as class imbalance in data sets, irrelevant or redundant attributes, and limited

knowledge of code structure [2]. The above issues may degrade machine learning models and their

generalization, thereby reducing prediction quality [3]. This paper presents a new framework, HDA-SE-

GFF, that integrates three advanced technical solutions across different phases of the defect prediction

process [4]. The first-class imbalance is addressed through a hybrid sampling method, namely the

combination of SMOTE and Tomek Links introduced in [5], which delivers both better-balanced and

more semantically informative data for classification. Then it used stacked denoising autoencoders for

deep, noise-invariant feature extraction to significantly reduce dimensionality while retaining good

feature reconstruction [6]. It enriched semantic and structural code features by using AST and PDG.

syntactical and control flow constructs [7]. HDA-SE-GFF was also experimented with object-oriented

software repositories [8]. Such a framework also outperformed the state of the art in terms of

classification performance, robustness, and feature usage compactness against existing defect-prediction

techniques, as shown in [9]. HDA-SE-GFF can provide a fresh, scalable perspective on conducting

software quality assurance in complex development environments, as the framework built from this

model is multi-level scalable [10].

HDA-SE-GFF was inspired to address several important limitations in the state-of-the-art methods for

defect prediction, wherein existing methods generally produce low-quality defect models due to class-

imbalance data, including redundant driver features and a lack of necessary context information in

source code. By means of deep autoencoding and advanced sampling techniques, the HDA-SE-GFF

framework aims to generate richer, more generalizable quality features that help enhance defect

classification accuracy in very large-scale object-oriented software systems along two dimensions:

semantics and structure.

Challenges

Met the problems: (1) imbalanced datasets, (2) removing redundant or unassessed factors, and (3)

indefinite semantic relations and structure contained in the just previous source code. There are many

available models for learning from imbalanced data or for complex social networks, but the resulting

predictive models tend to lack generalization performance and do not achieve high prediction accuracy

due to redundancy limitations. There are also other challenges in developing and maintaining the

integration of different representations in a single scalable and efficient tool framework to obtain

systematic, robust patterns for defect prediction.

Objectives

• Combining SMOTE with Tomek Links to better balance datasets that are not balanced, which

helps classifiers learn more about minority fault classes.

• Using stacked denoising autoencoders to create feature representations that are compact, robust

to noise, and non-redundant, which enhances the model's ability to generalize.

• Using ASTs and PDGs to get both structural and semantic code information for predicting bugs

in a way that takes the context into account.

Hybrid Sampling Strategy

The hybrid method uses SMOTE and Tomek Links to address class imbalance in software defect

datasets. SMOTE creates synthetic samples for the minority class, and Tomek Links discards majority

samples near the decision boundary. Therefore, two data processing methods make the dataset more

balanced and reduce noise, thereby boosting model performance by improving the expression of the

class of interest and decreasing the chance of being wrongly classified in the software defect prediction

task.

Bhavani, P. et al: A Robust feature engineering ……Archives for Technical Sciences 2025,34(3),815-832

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34 817

Figure 1. Autoencoder-driven software defect detection framework

Figure 1 Illustration of a strong pipeline for software defect detection using deep learning and feature

engineering. The pipeline uses raw software metrics, which are pre-processed using normalization,

outlier detection, and hybrid sampling (e.g., SMOTE-Tomek). The transformed software metrics are

sent to an autoencoder for feature learning, which yields a compact and meaningful representation of

the data. The feature representation from the latter asset is improved through redundancy reduction,

resulting in low-noise, relevant features. The performance data, along with its corresponding properties,

are delivered to a metric profiling stage, where key software measurements are studied. The finally

optimized features are used in a defect classification model, which improves performance across various

efficiency, accuracy, and scalability metrics for detecting software vulnerabilities in complex systems.

The remainder of this paper is structured as follows: Section 2 examines the related work on hybrid

sampling and semantic-structural code augmentation. In section 3, the methodology is explained. In

section 4, the evaluation setup is given. In Section 5, the results of the paper are discussed and analyzed.

Finally, Section 6 concludes the paper with a discussion of future work.

RELATED WORK

The advancement of software analysis and intelligent systems has been focused in the areas of

incorporating structured knowledge with deep learning in order to process complex relational data

[11][12][13]. The recent study proves effectiveness of using knowledge-based structures along with the

retrieval-augmented generation [1][29]. With the help of Knowledge Graphs (KG) and agentic retrieval,

they demonstrate that contextual awareness can be considerably improved in question-answering context

[14][15]. According to this methodology, a crucial roadmap to the software defect prediction is that the

combination of diagnostic relationships between the static code, in the form of graphs, and dynamic

retrieval systems can fill the gap between the raw source code and the semantics intent [16][17][18].

This kind of integration is important in detection of defects that do not lie on the surface in the code

metrics, but rather lurk in the logic of the system [19] [28].

Moreover, the issue of detecting specific patterns in large datasets is also addressed in another study [2],

which introduces prototypical hash encoding to facilitate the discovery of fine-grained categories [30].

It enables them to perform the task of finding subtle high-dimensional features on-the-fly efficiently,

which is particularly applicable in case of the discovery of rare defect patterns in imbalanced software

repositories [20][21]. Models can be more effective at differentiating between one feature set as being

defective and one being non-defective by encoding complex features into a lower dimensional latent

space, and the sheer high dimensionality of the feature set does not overwhelm the model [22][23]. This

is in line with the requirement of strong feature engineering which is capable of managing the sparseness

and variability of the object-oriented software systems [24][26][27].

Raw Software Metrics

Data Preprocessing

Normalization

Outlier Removal
Hybrid Sampling

Feature Refinement
Redundancy Elimination

 Metric Profiling

Optimized Feature Set

Software Defect Detection

Autoencoder-Based Feature

Learning

Bhavani, P. et al: A Robust feature engineering ……Archives for Technical Sciences 2025,34(3),815-832

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34 818

The processing of these intricate graph structures is also made computationally less problematic by

sophisticated mining processes [31]. The study discusses how Graphics Processing Units (GPUs) can

be used to speed up subgraph enumeration and pattern mining [3]. This study demonstrates the need of

hardware accelerated computation in case of large-scale program dependency graphs (PDGs) and

abstract syntax trees (ASTs). In software defect prediction, efficient graph mining enables one to extract

the structural features representing the control and data flow of the application in a very fast way. Using

GPU based architectures the HDA-SE-GFF framework is able to scale to software projects at the

industrial level where the complexity of the code-base would otherwise pose prohibitive computational

overhead.

According to the combination of these previous studies, it can be implied that the future of software

defect prediction will be associated with convergence between structural graph mining and effective

encoding of semantics. Whereas Knowledge Graphs offer the level of context required, prototypical

encoding makes sure that even the infrequent categories of defects are detected, and GPU-based mining

makes sure that the framework is scalable. All these studies suggest that a strong architecture should be

able to only represent what the code is (static metrics), but also how it behaves (structural patterns) and

still be highly computationally efficient.

METHODOLOGY

The HDA-SE-GFF is an effective deep-learning-based, semantic-feature-engineered software defect

prediction framework. It integrates stacked denoising autoencoders with an examination of program

structure via ASTs and PDGs, thereby incorporating both syntactic and contextual code information.

The prototype applies hybrid sampling in the form of adaptation and re-sampling, as well as a between-

class NK decision formulation to ensure balanced class proportions without compromising classifier

optimisation for enhanced prediction. In general, this framework offers a flexible and scalable approach

for enhancing software quality and shortening defect prediction time.

Figure 2. Hybrid sampling strategy: SMOTE + tomek links

Hybrid SMOTE and Tomek Links sampling for imbalanced defect datasets. The process is initiated

with the raw dataset, which consists of faulty and fault-free readings. The first step is to examine the

class distribution to assess data imbalance. SMOTE (Synthetic Minority Over-sampling Technique) is

then employed to generate synthetic samples for the minority class. After the density ordering, this

study uses the Tomek Links removal algorithm, which identifies and removes border majority samples

for which an instance in the minority class is closer. The final output is a balanced dataset that improves

Apply SMOTE (Synthetic

Minority Over-sampling

Technique)

Balanced Dataset

Output

(Defective + non-

defective)

Raw Dataset

Input

Analyze Class

Distribution

Count Minority &

Majority Samples

Identify Class

Imbalance Ratio

Apply Tomek

Links Removal

Identify Tomek

Pairs

Remove

Overlapping

Majority

Samples

Improved Class

Ratio

Reduced Boundary

Overlap

Bhavani, P. et al: A Robust feature engineering ……Archives for Technical Sciences 2025,34(3),815-832

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34 819

the class ratios and reduces overlap in decision boundaries, allowing for better classifier performance

and more appropriate generalization when applied to defect prediction tasks, as shown in Figure 2.

Hybrid sampling adjustment via SMOTE Tomek link 𝑌𝑟𝑠 is expressed using equation 1,

𝑌𝑟𝑠 = 𝑇(𝑌𝑖𝑏 , 𝑧𝑖𝑏) − 𝑈(𝑇(𝑌𝑖𝑏 , 𝑧𝑖𝑏), 𝑧𝑖𝑏) (1)

Equation 1 explains the hybrid sampling adjustment via SMOTE Tomek link is applied to the

unbalanced dataset to create the resampled feature set.

In this 𝑌𝑖𝑏is the original imbalanced feature matrix, 𝑧𝑖𝑏 is the corresponding binary class labels, 𝑇(.) is

the SMOTE oversampling operator, 𝑈(.) is the Tomek link removal function, and 𝑌𝑟𝑠 is the resampled

balanced feature matrix.

Denoising auto encoder layer encoding 𝑖(𝑚) is expressed using equation 2,

𝑖(𝑚) = ∅(𝑋(𝑚) ∗ 𝑖̃(𝑚−1) + 𝑐(𝑚)) (2)

Equation 2 explains the denoising auto encoder layer encoding is the corrupted input at layer is weights,

biases, and activation function transform to get the latent representation.

Deep Feature Extraction

Deep feature extraction in this architecture involves stacked denoising autoencoders, which aim to

extract meaningful and compact representations from the balanced input data. By corrupting original

data with Gaussian or masking noise, the model will extract essential patterns while filtering out

redundancy in the noisy representation. Each hidden layer of the autoencoder compresses the original

data, allowing the architecture to learn the different levels, or hierarchy of representations, which

enhances the accuracy and defensibility of defect prediction, especially for complex software systems.

Figure 3. Deep feature extraction: stacked denoising autoencoders

The SDAE is a deep feature extractor that is used in the extraction of deep features which is a hierarchical

deep feature extractor that enhances deep features robustness through the introduction of Gaussian or

masking noise to a balanced feature matrix. The model makes use of encoding, bottleneck and decoding

layers that transform the raw data to informative quantities in the form of latent representations. Figure

3 indicates that this multi-resolution process is applicable to eliminate redundancy and learn more

complicated structural dependencies. The features generated at the high level are extremely expressive

and therefore enhance the accuracy and stability of software defect prediction to an extent.

Extracted Deep

Features

Lower Dimensional

Noise-Reduced

Highly Informative

Each Layer Reduces

Dimensionality

Captures Hierarchical

Representation

Balanced Feature

Matrix Add Gaussian /

Masking Noise to

Input Layer

Regularization

Against Overfitting Encoder Bottleneck Decoder

Stacked Denoising Autoencoder

Layers

Bhavani, P. et al: A Robust feature engineering ……Archives for Technical Sciences 2025,34(3),815-832

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34 820

In this 𝑖̃(𝑚−1) is the noisy input from layer, 𝑋(𝑚) is the weight matrix for layer, 𝑐(𝑚) is the bias vector

for layer, ∅(.) is the nonlinear activation, and 𝑖(𝑚) is the encoded latent vector.

Auto encoder reconstruction loss 𝑀𝑟𝑐 is expressed using equation 3,

𝑀𝑟𝑐 =
1

𝑜
∑ ‖𝑦𝑗 − 𝜕 (∅(𝑦𝑗))‖

2

2
𝑜

𝑗=1

 (3)

Equation 3 explains the auto encoder reconstruction loss is the mean squares deviation of each original

input, and its reconstruction using the encoder-decoder pipeline, and is calculated by the reconstruction

loss.

In this 𝑦𝑗 is the original feature vector, ∅(.) is the encoder function, 𝜕(.) is the decoder function, 𝑜 is

the number of training samples, and 𝑀𝑟𝑐 is the mean reconstruction loss.

Graph based semantic structural feature aggregation 𝑎𝑤 is expressed using equation 4,

𝑎𝑤 = 𝜌 (∑
1

√𝑒𝑣𝑒𝑤

𝑋ℎ𝑦𝑣

𝑣∈𝑂(𝑤)

) (4)

Equation 4 explains the graph based semantic structural feature aggregation of each code node in the

semantic-structural tree uses a shared translation matrix and normalized adjacency weights to aggregate

characteristics from its neighbours.

Figure 4. Semantic-enriched feature fusion (AST + PDG)

A semantic-structural feature extraction scheme using ASTs and PDGs to operate. ASTs provide

information about the syntactic structure of the source code and form a fundamental graph structure that

identifies nodes such as loops, variables, and functions. PDGs, on the other hand, only model data and

control dependencies; they also provide rich contextual dimensions of a code base. Each representation

Capture Code Syntax

Hierarchies

Nodes:

Loops, Variables, Functions

Generate Program

Dependency Graphs

(PDGs)

AST Embeddings

(Structural Features)



Semantic-Enriched Feature Set

Both Structural + Semantic

Context

Improved Representational

Capacity

Capture Control + Data Flow

Dependencies

Edge Types:

*Variable Dependencies

*Control Flow

Combine via: Graph

Convolution

Pooling

PDG Embeddings

(Contextual

Dependencies)

Generate Abstract Syntax

Trees (ASTs)

•

Feature Fusion Layer

•

Bhavani, P. et al: A Robust feature engineering ……Archives for Technical Sciences 2025,34(3),815-832

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34 821

is embedded and provided to a feature fusion layer, after which structural (AST) and contextual (PDG)

information can be graph convoluted and pooled. The resulting feature set (with semiotic-semantic level

enhancement) of representations provides an extensive understanding of the behavior of code. This

fusion is essential, as it significantly increases representational capability, thereby increasing the chances

of identifying a software defect by operationalizing and preserving both structurally high-level and

culturally deep source code semantics from the source code in Figure 4.

In this 𝑂(𝑤) is the neighbor set of nodes, 𝑦𝑣 is the input feature of neighbor node, 𝑒𝑣 , 𝑒𝑤 are the degrees

of node, 𝑋ℎ is the graph transformation matrix, 𝜌(.) is the activation function, and 𝑎𝑤 is the aggregated

node embedding.

Feature fusion of auto encoder and graph representations 𝑔𝑗 is expressed using equation 5,

𝑔𝑗 = 𝛽 ∗ 𝑖𝑗
(𝑀)

+ (1 − 𝛽) ∗ 𝑎𝑗 (5)

Equation 5 explains the feature fusion of auto encoder and graph representations is the fused feature

using an adjustable interpolation factor, the vector combines the deep auto encoder representation with

graph semantic embedding.

In this 𝑖𝑗
(𝑀)

 is the final layer auto encoder feature, 𝑎𝑗 is the semantic structural embedding, 𝛽 is the fusion

weight hyper parameter, and 𝑔𝑗 is the final fused feature vector.

Classification output via soft max 𝑧̂𝑗 is expressed using equation 6,

𝑧̂𝑗 =
exp(𝑥𝑑

𝑈𝑔𝑗 + 𝑐𝑑)

∑ exp(𝑥𝑘
𝑈𝑔𝑗 + 𝑐𝑘)𝐷

𝑘=1

 (6)

Equation 6 explains the classification output via soft max is the likely hood over the merged feature

vector and classroom-specific weights and biases are used to calculate of class for sample.

In this 𝑔𝑗 is the input feature vector, 𝑥𝑑
 is the class weight vector, 𝑐𝑑 is the class bias, 𝐷 is the total

number of defect classes, and 𝑧̂𝑗 is the predicted class probability.

Semantic-Enriched Feature Fusion

The Semantic-Enriched Feature Fusion detects and integrates structural and contextual information from

source code through ASTs and PDGs. ASTs determine and represent the syntactical structure hierarchy,

such as tree diagrams, while PDGs depict the control and data dependence of program statements. These

enriched-extracted features are embedded and fused using Graph-based learning consideration to

generate a collection of rich and context-aware features. The semantically enriched embedded graph

features provide a multifaceted and multi-dimensional sense for detecting finer-grained patterns in

defective code.

The last step in the HDA-SE-GFF procedure is the one of training powerful classification models that

are founded on deep and semantically enriched features, such as the Random Forest or XGBoost. The

maximisation of predictive quality of the model is achieved by cross-validation and hyperoptimizing

embedding dimensions and learning rates. This sophisticated design would allow the detection of bugs

in the actual life repositories with predictability and certainty that would allow the developers to develop

a vulnerability and correct it in its early stages given quality assurance process as shown in Figure 5.

Bhavani, P. et al: A Robust feature engineering ……Archives for Technical Sciences 2025,34(3),815-832

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34 822

Figure 5. Classification and evaluation in defect prediction

Algorithm 1: HDA-SE-GFF with Feature Fusion and Softmax Classification

𝐼𝑛𝑝𝑢𝑡:

 − 𝑆𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑑𝑒 𝑑𝑎𝑡𝑎 (𝑜𝑏𝑗𝑒𝑐𝑡 − 𝑜𝑟𝑖𝑒𝑛𝑡𝑒𝑑 𝑟𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑖𝑒𝑠)

 − 𝐿𝑎𝑏𝑒𝑙𝑠 (𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 / 𝑛𝑜𝑛 − 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒)

 − 𝐹𝑢𝑠𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡 𝛽 (0 ≤ 𝛽 ≤ 1)

 − 𝐶𝑙𝑎𝑠𝑠 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 {𝑥₁ᵁ, 𝑥₂ᵁ, . . . , 𝑥_𝐷ᵁ}

 − 𝐶𝑙𝑎𝑠𝑠 𝑏𝑖𝑎𝑠𝑒𝑠 {𝑐₁, 𝑐₂, . . . , 𝑐_𝐷}

𝑂𝑢𝑡𝑝𝑢𝑡:

 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 {ẑ₁, ẑ₂, . . . , ẑ_𝐷}

𝐵𝑒𝑔𝑖𝑛

1. 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔:

 − 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡 𝑆𝑦𝑛𝑡𝑎𝑥 𝑇𝑟𝑒𝑒 (𝐴𝑆𝑇)

 − 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 𝐺𝑟𝑎𝑝ℎ (𝑃𝐷𝐺)

 − 𝑖𝑓 𝐴𝑆𝑇 𝑜𝑟 𝑃𝐷𝐺 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑖𝑙𝑠:

 → 𝐿𝑜𝑔 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑠 "𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒"

 → 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑡𝑜 𝑛𝑒𝑥𝑡 𝑠𝑎𝑚𝑝𝑙𝑒

Tuned with Cross-

Validation

Random Forest /

XGBoost / SVM

Learn from

Labeled Defect

Data

Minimize Loss

Function

Optimized Defect

Prediction Model

Ready for Deployment

on Software Repos

Classifier Selection

Model Evaluation

Embedding

Dimension
Batch Size

Learning Rate

Bhavani, P. et al: A Robust feature engineering ……Archives for Technical Sciences 2025,34(3),815-832

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34 823

 𝑒𝑙𝑠𝑒:

 → 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 − 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 `𝑎_𝑗`

2. 𝐻𝑦𝑏𝑟𝑖𝑑 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔:

 − 𝑖𝑓 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑖𝑠 𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑:

 → 𝐴𝑝𝑝𝑙𝑦 𝑆𝑀𝑂𝑇𝐸 𝑓𝑜𝑟 𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

 → 𝐴𝑝𝑝𝑙𝑦 𝑇𝑜𝑚𝑒𝑘 𝐿𝑖𝑛𝑘𝑠 𝑡𝑜 𝑟𝑒𝑚𝑜𝑣𝑒 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

 𝑒𝑙𝑠𝑒:

 → 𝑃𝑟𝑜𝑐𝑒𝑒𝑑 𝑡𝑜 𝑛𝑒𝑥𝑡 𝑠𝑡𝑒𝑝

3. 𝐷𝑒𝑒𝑝 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛:

 − 𝑇𝑟𝑎𝑖𝑛 𝑠𝑡𝑎𝑐𝑘𝑒𝑑 𝑑𝑒𝑛𝑜𝑖𝑠𝑖𝑛𝑔 𝑎𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟 𝑤𝑖𝑡ℎ:

 → 5 𝑙𝑎𝑦𝑒𝑟𝑠, 256 ℎ𝑖𝑑𝑑𝑒𝑛 𝑢𝑛𝑖𝑡𝑠, 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 20%, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 5

 → 𝐵𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 64, 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑑𝑖𝑚 = 300

 − 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑓𝑖𝑛𝑎𝑙 − 𝑙𝑎𝑦𝑒𝑟 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 `𝑖_𝑗^(𝑀)`

4. 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝐹𝑢𝑠𝑖𝑜𝑛 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5):

 − 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑓𝑢𝑠𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 `𝑔_𝑗`:

 → 𝑔𝑗 = 𝛽 ∗ 𝑖𝑗
(𝑀)

+ (1 − 𝛽) ∗ 𝑎𝑗

 − 𝑖𝑓 𝑔_𝑗 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑁𝑎𝑁 𝑜𝑟 𝑖𝑛𝑓 𝑣𝑎𝑙𝑢𝑒𝑠:

 → 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑜𝑟 𝑟𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠

 𝑒𝑙𝑠𝑒:

 → 𝑃𝑟𝑜𝑐𝑒𝑒𝑑

5. 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑣𝑖𝑎 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6):

 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡 𝑓𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠: 𝑠𝑜𝑓𝑡𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒𝑠 = []

 − 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠 𝑑 𝑖𝑛 {1, . . . , 𝐷}:

 → 𝐶𝑜𝑚𝑝𝑢𝑡𝑒: 𝑠𝑐𝑜𝑟𝑒_𝑑 = 𝑒𝑥𝑝(𝑥_𝑑ᵁ ⋅ 𝑔_𝑗 + 𝑐_𝑑)

 − 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟: 𝑠𝑢𝑚_𝑒𝑥𝑝 = 𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑐𝑜𝑟𝑒_𝑑 𝑣𝑎𝑙𝑢𝑒𝑠

 − 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠 𝑑:

 → ẑ_𝑑 = 𝑠𝑐𝑜𝑟𝑒_𝑑 / 𝑠𝑢𝑚_𝑒𝑥𝑝

 → 𝐴𝑝𝑝𝑒𝑛𝑑 ẑ_𝑑 𝑡𝑜 𝑠𝑜𝑓𝑡𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒𝑠

Bhavani, P. et al: A Robust feature engineering ……Archives for Technical Sciences 2025,34(3),815-832

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34 824

 − 𝑖𝑓 𝑚𝑎𝑥(ẑ_𝑑) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑:

 → 𝐴𝑠𝑠𝑖𝑔𝑛 𝑐𝑙𝑎𝑠𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥(ẑ_𝑑)

 𝑒𝑙𝑠𝑒:

 → 𝐿𝑎𝑏𝑒𝑙 𝑎𝑠 "𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛"

6. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛:

 − 𝐶𝑜𝑚𝑝𝑎𝑟𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑡𝑟𝑢𝑒 𝑙𝑎𝑏𝑒𝑙𝑠

 − 𝑖𝑓 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 > 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒:

 → 𝑆𝑎𝑣𝑒 𝑚𝑜𝑑𝑒𝑙

 𝑒𝑙𝑠𝑒:

 → 𝐴𝑑𝑗𝑢𝑠𝑡 𝛽 𝑜𝑟 𝑟𝑒 − 𝑡𝑟𝑎𝑖𝑛 𝑎𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟

𝐸𝑛𝑑

The algorithm 1 fuses deep autoencoder features and semantic graph embeddings using a weighted factor

(β) to form a robust feature vector. It then applies a SoftMax function over this fused vector to compute

class probabilities. The model improves defect prediction accuracy by handling imbalance, redundancy,

and code structure context.

In summary, deep autoencoding, semantic feature graph fusion, and hybrid sampling to advance

software defect prediction. It captures both structural and contextual features by representing ASTs and

PDGs as semantic graphs, balances training datasets with SMOTE-Tomek, and utilizes statistical

techniques to optimize unsupervised classification through 10-fold cross-validation. HDA-SE-GFF

strongly suggests the model represents an efficient approach to real-world software quality assurance.

EVALUATION SETUP

Dataset Description: The experiment makes use of object-oriented benchmark datasets in the

PROMISE repository such as Lucene, Jure and Velocity. These datasets include fixed metrics of code

such as Halstead and McCabe complexity. The evidence of the experiment has pronounced imbalances

in classes, as the %ages of defects tend to be lower than 25% in hundreds of cases. Such sources also

offer a rich variety of software versions so that the evaluation of the HDA-SE-GFF architecture can be

done against the background of different levels of structural complexity and sparsity of the data.

Software Details: In order to realize the suggested architecture, the researchers used Python 3.8+ as the

primary programming language. The Stacked Denoising Autoencoders are the elements of deep learning

that were created with the help of TensorFlow 2.x and Keras. To balance the data, Imbalanced-learn

(imbalanced) library was used to balance the data with the SMOTE and Tomek Links sampling as well

as Scikit-learn supported such classifiers as Random Forest and XGBoost. Joern was used to decode

into ASTs and PDGs.

Evaluation Metrics

This proposed evaluation framework details a thorough exploration of the architectural and training

parameters of the HDA-SE-GFF model with eight measures of analysis. This outlines the effects of layer

depth, neuron depth, dropout regulation, decay in learning rate, batch gradient sampling, graph structure

consumption, semantics expression quality, and oversampling ratio on the performance of the model.

Bhavani, P. et al: A Robust feature engineering ……Archives for Technical Sciences 2025,34(3),815-832

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34 825

Cross entropy classification loss 𝑀𝑑𝑚𝑡 is expressed using equation 7,

𝑀𝑑𝑚𝑡 = −
1

𝑜
∑ ∑ 𝑧𝑗,𝑑 ∗ log(𝑧̂𝑗,𝑑)

𝐷

𝑑=1

𝑜

𝑗=1

 (7)

Equation 7 explains the cross-entropy classification loss calculates the average cross-entropy between

the anticipated probability and the ground truth for every class and sample.

In this 𝑧𝑗,𝑑 is the ground truth one-hot label, 𝑧̂𝑗,𝑑 is the predicted soft max probability, 𝑜 is the total

number of training instances, 𝐷 is the number of classes, and 𝑀𝑑𝑚𝑡 is the classification loss.

Analysis of auto-encoder layer dynamics 𝐼(𝑀) is expressed using equation 8,

𝐼(𝑀) = 𝜕𝑀(𝑋(𝑀) ∗ 𝜕𝑀−1(… 𝜕1(𝑋(1) ∗ 𝑌 + 𝑐(1)) + ⋯) + 𝑐(𝑀)) (8)

Equation 8 explains the analysis of auto encoder layer dynamics is to enable systematic abstraction of

latent structure, multi-level encoding is carried out by cascading not linear projections across levels to

yield.

In this 𝑌 is the input observation matrix, 𝑋(𝑀) is the transformation matrix at layer, 𝑐(𝑀) is the bias

vector at layer, 𝜕𝑀(.) is the activation mapping at layer, and 𝐼(𝑀) is the encoded output at final depth.

Analysis of hidden layer size selection 𝑙𝑚 is expressed using equation 9,

𝑙𝑚 = [𝜕 ∗ √𝑙𝑚−1 ∗ 𝑒] (9)

Equation 9 explains the analysis of hidden layer size selection at layer is the hidden unit count is

geometrically scaled from the layer above, with the use of a complication modulation coefficient.

In this 𝑙𝑚 is the hidden dimension at layer, 𝑙𝑚−1 is the previous layer output size, 𝑒 is the initial input

space cardinality, and 𝜕 is the hidden unit scaling coefficient.

Analysis of dropout regularization rate 𝑖̃(𝑚) is expressed using equation 10,

𝑖̃(𝑚) = 𝑖(𝑚) ∗ 𝑛, 𝑛~𝐵𝑜𝑙𝑖(1 − ∆) (10)

Equation 10 explains the analysis of dropout regularization rate is masked latent vector is produced using

the dropout mechanism by the use of a random Bernoulli mask with a dropout probability.

In this 𝑖(𝑚) is the latent activation at layer, 𝑛 is the dropout mask, ∆ is the dropout rate, ∗ is the element

wise multiplication, and 𝑖̃(𝑚) is the regularized latent vector.

Analysis of learning rate dynamics 𝜕𝑢 is expressed using equation 11,

𝜕𝑢 = 𝜕0 ∗ (1 − ∇𝑢)−𝛾 , (11)

Equation 11 explains the analysis of learning rate dynamics with decay parameters and the temporal

learner coefficient decays polynomial to its initial value to stabilize convergence.

In this 𝜕0 is the initial learning magnitude, 𝑢 is the epoch index, ∇ is the schedule multiplier, 𝛾 is the

decay exponent, and 𝜕𝑢 is the adjusted learning rate at time.

Bhavani, P. et al: A Robust feature engineering ……Archives for Technical Sciences 2025,34(3),815-832

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34 826

Analysis of batch size influence ∆𝜗𝑀𝑐 is expressed using equation 12,

∆𝜗𝑀𝑐 =
1

𝑐
∑ ∆𝜗𝑀(𝑦𝑗; 𝜗)

𝑐

𝑗=1

 (12)

Equation 12 explains the analysis of batch size influence calculating gradients for parameters using sized

mini-batches, is estimated, and sub-sample averaging is used to stabilize training variance.

In this 𝑀𝑐 is the mini batch loss, 𝜗 is the learnable parameters, 𝑐 is the batch size, 𝑦𝑗 is the input sample,

and ∆𝜗 is the gradient operator.

Graph construction strategy 𝐵𝑗𝑘 is expressed using equation 13,

𝐵𝑗𝑘 = {
1, 𝑖𝑓 ∃(𝑤𝑗 → 𝑤𝑘) ∈ 𝜖𝐵𝑇𝑈 ∪ 𝜖𝑄𝐸𝐻

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13)

Equation 13 explains the graph construction strategy is the connectors from algebraic syntax trees and

programs dependency graphs are encoded to create the adjacency matrix.

In this 𝐵 is the adjacency representation of semantic graph, 𝑤𝑗, 𝑤𝑘 are the program entity nodes,

𝜖𝐵𝑇𝑈, 𝜖𝑄𝐸𝐻 are the edge sets from AST and PDG, and 𝑗, 𝑘 are the node indices.

Analysis of embedding dimensionality 𝐷𝑖𝑜 is expressed using equation 14,

𝐷𝑖𝑜 = − ∑ 𝑞𝑗 log 𝑞𝑗

𝑒𝑓

𝑗=1

 (14)

Equation 14 explains the analysis of embedding dimensionality entropy info is used to examine

embedding space dimensionality across latent dimensions, guaranteeing good representational richness.

In this 𝑒𝑓 is the embedding size, 𝑞𝑗 is the probability mass across dimension, and 𝐷𝑖𝑜 is the embedding

information complexity.

Sampling ratio index 𝜕 is expressed using equation 15,

𝜕 =
|𝑌𝑚𝑗

𝑝𝑑
| + |𝑌𝑚𝑛

𝑠𝑐 |

|𝑌𝑜𝑔
 |

 (15)

Equation 15 explains the sampling ratio index by merging the pruned majority plus synthesized minority

samples in relation to the original dataset. The sampling ratio measures the balanced set size.

In this |𝑌𝑚𝑗
𝑝𝑑

| is the remaining majority of instances post-Tomek, |𝑌𝑚𝑛
𝑠𝑐 | is the synthetic minority samples

from SMOTE, |𝑌𝑜𝑔
 | is the total initial samples, and 𝜕 is the sampling balance ratio.

The measures help confirm the coupled optimization of deep learning and code semantics assumed

through HDA-SE-GFF by quantitatively modelling each architectural component of the model. Thereby

improving robustness, efficient feature compression, and superior class discrimination. More generally,

this methodology provided a way to tune hyperparameters and test the model’s scaling behavior while

verifying its ability to predict software defects.

Bhavani, P. et al: A Robust feature engineering ……Archives for Technical Sciences 2025,34(3),815-832

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34 827

RESULTS OF THE PAPER

Class imbalance is a major hindrance to software fault prediction, as it may introduce bias into models

and prevent the identification of errors associated with rare classes. To address this issue, the HDA-SE-

GFF scheme adopts a hybrid sampling approach based on Tomek Links and SMOTE. In this way, the

dataset is well balanced, which improves fault detection and yields better classification performance

compared with other methods, especially for rare yet important faults.

Figure 6. The analysis of the autoencoder layer

The HDA-SE-GFF architecture is used in the Stacked Denoising Autoencoder (SDAE) to specify the

hierarchy of the feature extraction of the architecture, in terms of its depth. It can be observed that the

model converts the raw measurements of software in abstractions in a sequential manner by using five

layers that are designed. In the low echelons where layers are shallow, simple patterns of semantics can

be found and in deep layers, more complicated semantic patterns are available. This 5-layer (Figure 6)

trade-off is not very deep that it will squash and reveal latent defect-prone features or very deep that it

will cause over fitting or vanishing gradients. Lastly, this architecture will not just be perfectly modelled

but generalization will as well be necessary to predict software defects erroneously.

Figure 7. The analysis of hidden layer size

Bhavani, P. et al: A Robust feature engineering ……Archives for Technical Sciences 2025,34(3),815-832

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34 828

Hidden layer size refers to the number of neurons in an autoencoder at each layer and the threshold for

the autoencoder's representation capacity. In HDA-SE-GFF (Figure 7), a hidden layer size of 256

enables the model to extract a sufficient level of detail from the high-dimensional feature vectors without

being overly complex validated using equation 9. A relatively larger hidden layer size can learn more

complex patterns in the alterations. Still, it also carries the risk of overfitting, particularly since there is

limited publicly available data from JS effort tracker tools. Also, under-fitting can occur at small sizes

and result in the loss of some critical information. It's essential to select an appropriate hidden layer size

to preserve the code's semantic and structural features when it's extracted.

Figure 8. The analysis of dropout rate

Based on Equation 10, HDA-SE-GFF model involves the use of 20 % dropout rate to stabilize

overfitting. The training process leads the network to establish robust and redundant representations

rather than having a reliance on the specific nodes by deactivating the neurons randomly. This kind of a

balanced regularization offers stability in the learning and generalizability of the model balancing

successful feature learning and generalizability show in figure 8.

Figure 9. The analysis of learning rate

Bhavani, P. et al: A Robust feature engineering ……Archives for Technical Sciences 2025,34(3),815-832

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34 829

Learning rate in HDA-SE-GFF architecture plays an important role in controlling the weight update and

stable convergence. It was also decided to use a learning rate of 5 to maximise the performance of the

autoencoder without the model becoming trapped in the minima in the loss landscape. This particular

rate is such that the model slowly reduces loss, and all the essential semantic content of the defect-related

features is retained in the deep architecture. This configuration provides the network with an opportunity

to take the optimal loss function and be sensitive to minute patterns in the source code by balancing

between speed and stability in training as demonstrated in Figure 9.

Figure 10. The analysis of batch size

In the HDA-SE-GFF architecture (Figure 10), every batch size of 64 is used to find the trade off point

between the efficiency of the memory and the stability of the gradient. Even though bigger batches

accelerate the training, this often leads to sharp minima and poor generalization. Smaller batches, on the

other hand, produce less noise but better generalization. The batch of 64 samples ensures that the

estimates of gradients are always consistent which is required to deal with the complex semantic-

structural features that are realized after the ASTs and PDGs.

Table 1. The graph construction strategy

Parameter Description Value/Setting

Graph Type
Type of graph used for joint

representation
AST + PDG (Hybrid Graph)

Node Types Entities represented as nodes
Variables, Functions, Loops,

Conditions, Blocks

Graph Size (avg. edges)
Average number of edges per

method graph
80–300 edges

Graph Size (avg. nodes)
Average number of nodes per

method graph
40–150 nodes

Graph Normalization

Technique

Preprocessing to maintain

numerical stability
Symmetric normalization

Graph Traversal

Algorithm
Used for feature aggregation

Message Passing / Attention-based

Aggregation

In HDA-SE-GFF, syntactic and control-flow relationships are represented by use of hybrid graph

building with ASTs and PDGs. Authenticated in Equation 13, these charts normally include 40 to 150

nodes and 80 to 300 edges per approach. Symmetrical normalization makes the features aggregation

numerically stable. Through message passing or attention, the model is able to learn complex

dependencies of variables and functions at the structural hierarchy of the code represented in Table 1.

Bhavani, P. et al: A Robust feature engineering ……Archives for Technical Sciences 2025,34(3),815-832

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34 830

Figure 11. The analysis of embedding dimension

The embedding size in HDA-SE-GFF is 300, in order to embed components of code in a descriptive

feature space. This dimension will ensure that semantic and structural patterns are represented in detail

in a balance to Equation 14. The 300 selection averts the overfitting as a result of the low-dimensionality

as well as sparsity because of the large size. Models that are expressive and computationally efficient

through the trade-off allow sound semantic enrichment of deep learning tasks on heterogeneous source

code shown in figure 11.

Table 2. Sampling ratio (SMOTE: Tomek)

Parameter Description Value/ Setting

Sampling Technique Method used to handle class imbalance
SMOTE + Tomek

Links

SMOTE: Tomek Ratio
Proportion of synthetic oversampling to

undersampling
60:40

SMOTE Nearest

Neighbors

Number of nearest neighbors for generating synthetic

samples
5

Class Distribution (Post) %age of majority vs. minority classes after sampling Approximately 50:50

Impact on Recall Improvement in recall due to rebalancing +15% (average)

To address the problem of unequal classes, HDA-SE-GFF model is a SMOTE-Tomek sampling.

SMOTE generates artificial minority in 60:40 proportions, and Tomek Links eliminates border-line

noise. It is a compound approach that serves in the rearrangement of the distorted distributions (e.g.

85:15) into a more balanced 50:50 in the formation of an average increase of +15 % in recall in table 2.

The model is very good in identifying the rare defects and in cases of deep auto-coding and fusing

semantic graphs. The architecture has proven to be more faithful and stronger than normal methods and

results have been given that the architecture can be scaled to a massive size to identify bugs in running

modern software systems.

CONCLUSION

The proposed framework, HDA-SE-GFF, constitutes a comprehensive and intelligent methodology for

software defect prediction that alleviates key issues, including class imbalance, highly redundant feature

domains, and a lack of contextual structural information [25]. The performance of classification and

generalization is enhanced by SMOTE-Tomek hybrid sampling, stacked denoising autoencoders, and

semantic-structural graph feature fusion on ASTs and PDGs. With deep autoencoding to determine the

best technical settings, this model used five layers of 256 units with 20% dropout and a learning rate of

0.001, producing embeddings of 300 dimensions as a strong yet concise feature representation. Through

experiments on object-oriented resources, it showed that HDA-SE-GFF outperforms its base methods

across accuracy, recall, and robustness. It is promising if it scales, and it can improve software quality

assurance and guarantees in difficult, real-world, and complex development environments. Future study

Bhavani, P. et al: A Robust feature engineering ……Archives for Technical Sciences 2025,34(3),815-832

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34 831

would like to further develop HDA-SE-GFF towards more complete cross-project defect prediction and

a multilingual codebase for better scalability and flexibility. There is another possibility that future work

could leverage dynamic code analysis and real-time bug-localization techniques, since these approaches

might lead to more accurate defect prediction. Furthermore, plan to introduce explainable AI techniques

into the workflows of HDA-SE-GFF to interpret why models make decisions, thereby increasing

trustworthiness and utility for software engineering.

REFERENCES

[1] Gao F, Xu S, Hao W, Lu T. KA-RAG: Integrating Knowledge Graphs and Agentic Retrieval-Augmented

Generation for an Intelligent Educational Question-Answering Model. Applied Sciences. 2025 Nov

26;15(23):12547. https://doi.org/10.3390/app152312547

[2] Zheng H, Pu N, Li W, Sebe N, Zhong Z. Prototypical hash encoding for on-the-fly fine-grained category

discovery. Advances in Neural Information Processing Systems. 2024 Dec 16; 37:101428-55.

https://doi.org/10.52202/079017-3216

[3] Husainat M. Exploiting graphics processing units to speed up subgraph enumeration for efficient graph

pattern mining GraphDuMato. PatternIQ Mining. 2024 Feb;1(2). https://doi.org/10.70023/piqm24121

[4] Wei Y, Xu Y, Zhu L, Ma J, Huang J. FUMMER: A fine-grained self-supervised momentum distillation

framework for multimodal recommendation. Information Processing & Management. 2024 Sep

1;61(5):103776. https://doi.org/10.1016/j.ipm.2024.103776

[5] Rahim R. Optimizing reconfigurable architectures for enhanced performance in computing. SCCTS

Transactions on Reconfigurable Computing. 2024;1(1):11-5.

[6] Zhang Z, Saber T. Machine learning approaches to code similarity measurement: A systematic review. IEEE

Access. 2025 Mar 21. https://doi.org/10.1109/ACCESS.2025.3553392

[7] Lv C, Qi M, Li X, Yang Z, Ma H. Sgformer: Semantic graph transformer for point cloud-based 3d scene

graph generation. InProceedings of the AAAI Conference on Artificial Intelligence 2024 Mar 24 (Vol. 38,

No. 5, pp. 4035-4043). https://doi.org/10.1609/aaai.v38i5.28197

[8] Alkato AA, Sakhnini Y. Advanced real-time anomaly detection and predictive trend modelling in smart

systems using deep belief networks architectures. PatternIQ Mining. 2025 Feb;2(1).

https://doi.org/10.70023/sahd/250209

[9] Hudagi MR, Soma S, Biradar RL. Political Improved Invasive Weed Optimization-Driven Hybrid Exemplar

Technique for Video Inpainting Process. International Journal of Pattern Recognition and Artificial

Intelligence. 2023 Jan 28;37(01):2255018. https://doi.org/10.1142/S0218001422550187

[10] Borhan MN. Exploring smart technologies towards applications across industries. Innovative Reviews in

Engineering and Science. 2025;2(2):9-16.

[11] Gandhi ST. AI-Driven Smart Contract Security: A Deep Learning Approach to Vulnerability Detection.

International Journal of Advanced Research in Computer Science & Technology (IJARCST). 2025 Jan

6;8(1):11540-7. https://doi.org/10.15662/IJARCST.2025.0801004

[12] Syed Abu Bakar SA, Waseem S, Omar Z, Bilalashfaqahmed. Exploring the Advancements and Challenges

of Deepfake Face-swap: A Survey. Multimedia Tools and Applications. 2026 Jan 21;85(1):14.

https://doi.org/10.1007/s11042-026-21285-8

[13] Zaki N, Alderei R, Alketbi M, Alkaabi A, Alneyadi F, Zaki N. Beyond N-Grams: Enhancing String Kernels

with Transformer-Guided Semantic Insights. IEEE Access. 2025 Jun 3.

https://doi.org/10.1109/ACCESS.2025.3576076

[14] Jin D, He C, Zou Q, Qin Y, Wang B. Source Code Vulnerability Detection Based on Joint Graph and

Multimodal Feature Fusion. Electronics. 2025 Feb 28;14(5):975.

https://doi.org/10.3390/electronics14050975

[15] Wang X, Liu J, Deng J, Wang M, Deng Q, Yan Y, Wang L, Ma Y, Pan JZ. Semantic Alignment of Malicious

Question Based on Contrastive Semantic Networks and Data Augmentation. Journal of Artificial Intelligence

Research. 2025 Mar 5; 82:1243-66. https://doi.org/10.1613/jair.1.16369

[16] Gao Y, Zhang H, Lyu C. Encosum: enhanced semantic features for multi-scale multi-modal source code

summarization. Empirical Software Engineering. 2023 Sep;28(5):126. https://doi.org/10.1007/s10664-023-

10384-x

[17] Yadav KK, Thakur G, Srivastava J. A Hybrid Tri-Encoder model for fake news detection in Bengali with

LIME-based explainability. Intelligent Decision Technologies. 2025 Nov;19(6):3984-4003.

https://doi.org/10.1177/18724981251384403

[18] Mahouachi R. Knowledge distillation-driven commit-aware multimodal learning for software vulnerability

detection. Automated Software Engineering. 2026 Dec;33(2):48. https://doi.org/10.1007/s10515-026-00595-

z

Bhavani, P. et al: A Robust feature engineering ……Archives for Technical Sciences 2025,34(3),815-832

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34 832

[19] Li L, Li J, Xu Y, Zhu H, Zhang X. Enhancing code summarization with graph embedding and pre-trained

model. International Journal of Software Engineering and Knowledge Engineering. 2023 Dec

12;33(11n12):1765-86. https://doi.org/10.1142/S0218194023410024

[20] Shebl KS, Afify YM, Badr N. Software Defect Prediction Approaches Revisited. International Journal of

Intelligent Computing and Information Sciences. 2023 Sep 1;23(3):31-58.

[21] Gong J, Niu W, Li S, Zhang M, Zhang X. Sensitive Behavioral Chain-Focused Android Malware Detection

Fused with AST Semantics. IEEE Transactions on Information Forensics and Security. 2024 Sep 26.

https://doi.org/10.1109/TIFS.2024.3468891

[22] Yang Z, Du H, Niyato D, Wang X, Zhou Y, Feng L, Zhou F, Li W, Qiu X. Revolutionizing wireless networks

with self-supervised learning: A pathway to intelligent communications. IEEE Wireless Communications.

2025 Mar 17. https://doi.org/10.1109/MWC.002.2400197

[23] Yang X, Li H, Zhang J, Deng Y, Yuan H. Integrating textual data and knowledge graphs for intelligent fault

diagnosis in railway operational equipment. Applied Intelligence. 2026 Jan;56(1):11.

https://doi.org/10.1007/s10489-025-07011-1

[24] Houssel PR, Layeghy S, Singh P, Portmann M. ex-nids: A framework for explainable network intrusion

detection leveraging large language models. Computers and Electrical Engineering. 2026 Jan 1; 129:110826.

https://doi.org/10.1016/j.compeleceng.2025.110826

[25] Alhanaf AS, Balik HH, Farsadi M. Intelligent fault detection and classification schemes for smart grids based

on deep neural networks. Energies. 2023 Nov 20;16(22):7680. https://doi.org/10.3390/en16227680

[26] Sun Y, Zheng J, Zhao H, Zhou H, Li J, Li F, Xiong Z, Liu J, Li Y. Modifying the one-hot encoding technique

can enhance the adversarial robustness of the visual model for symbol recognition. Expert Systems with

Applications. 2024 Sep 15; 250:123751. https://doi.org/10.1016/j.eswa.2024.123751

[27] Ito JY, Silveira FF, Munhoz IP, Akkari AC. International publication trends in Lean Agile Management

research: A bibliometric analysis. Procedia Computer Science. 2023 Jan 1; 219:666-73.

https://doi.org/10.1016/j.procs.2023.01.337

[28] Luosang G, Wang Z, Liu J, Zeng F, Yi Z, Wang J. Automated quality assessment of medical images in

echocardiography using neural networks with adaptive ranking and structure-aware learning. International

journal of neural systems. 2024 Oct 10;34(10):2450054. https://doi.org/10.1142/S0129065724500540

[29] Zheng A, Cai J, Yang H, Xun Y, Zhao X. Triple-Stream Contrastive Deep Embedding Clustering via Semantic

Structure. Mathematics. 2025 Nov 7;13(22):3578. https://doi.org/10.3390/math13223578

[30] Yang L, Zhao S. ARGUS: A Neuro-Symbolic System Integrating GNNs and LLMs for Actionable Feedback

on English Argumentative Writing. Systems. 2025 Dec 1;13(12):1079.

https://doi.org/10.3390/systems13121079

[31] Villegas-Ch W, Gutierrez R, García-Ortiz J, Guevara V. Explainable educational assistant integrated in

Moodle: automated semantic assessment and adaptive tutoring based on NLP and XAI. Discover Artificial

Intelligence. 2025 Jul 30;5(1):191. https://doi.org/10.1007/s44163-025-00438-y

