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SUMMARY

The sophistication of the contemporary code has augmented defect prediction (SDP) with vital concerns
like severe imbalance in classes, high redundancy of features and failure of conventional techniques to
gain the rich semantic and structural context of a source code. The model suggested within the current
paper is HDA-SE-GFF that has Semantic-Enriched Graph Feature Fusion. In order to address the data
imbalance, a hybrid sampling method, which is a mixture of SMOTE and Tomek links, is applied to
produce synthetic minor samples without duplicating the majority data on the edge of choice. The Stacked
Denoising Autoencoders (SDAEs) store deep features so as to achieve noise-invariant features.
Meanwhile, code context may be acquired through translating Abstract Syntax trees (ASTs) and Program
Dependency graphs (PDGs) to semantic-structural embeddings. The combination of these deep and
structure features is with a weighted interpolation factor (or -) and is categorized by a Softmax layer.
HDA-SE-GFF was trained in a 5-layer auto-encoder with 256-512 hidden cells, 20 % dropout and a
learning rate of 5. The architecture, according to the experimental results of object-oriented software
repositories, is much superior to baseline methods in terms of classification accuracy and model
robustness. The key lessons learned include that the hybrid sampling approach is an effective method of
alleviating the bias of the majority classes and at 80-300 edge-density code behavior, the combined
representation of AST and PDG embedding. HDA-SE-GFF model suggests scaling and precise quality
assurance procedure into the quality of software, an effective method of bridging the disassociation
between the unmanaged process of feature learning and code structural examinations of large-scale
systems.

Key words: defect prediction, feature engineering, autoencoders, SMOTE, code semantics, software
quality.

INTRODUCTION

The modern software systems become increasingly complex; defect prediction is a crucial task for
supporting the quality and reliability of software products [1]. Some existing defect prediction
approaches are useful, and almost all of them are based on the classical approach, which has several
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drawbacks, such as class imbalance in data sets, irrelevant or redundant attributes, and limited
knowledge of code structure [2]. The above issues may degrade machine learning models and their
generalization, thereby reducing prediction quality [3]. This paper presents a new framework, HDA-SE-
GFF, that integrates three advanced technical solutions across different phases of the defect prediction
process [4]. The first-class imbalance is addressed through a hybrid sampling method, namely the
combination of SMOTE and Tomek Links introduced in [5], which delivers both better-balanced and
more semantically informative data for classification. Then it used stacked denoising autoencoders for
deep, noise-invariant feature extraction to significantly reduce dimensionality while retaining good
feature reconstruction [6]. It enriched semantic and structural code features by using AST and PDG.
syntactical and control flow constructs [7]. HDA-SE-GFF was also experimented with object-oriented
software repositories [8]. Such a framework also outperformed the state of the art in terms of
classification performance, robustness, and feature usage compactness against existing defect-prediction
techniques, as shown in [9]. HDA-SE-GFF can provide a fresh, scalable perspective on conducting
software quality assurance in complex development environments, as the framework built from this
model is multi-level scalable [10].

HDA-SE-GFF was inspired to address several important limitations in the state-of-the-art methods for
defect prediction, wherein existing methods generally produce low-quality defect models due to class-
imbalance data, including redundant driver features and a lack of necessary context information in
source code. By means of deep autoencoding and advanced sampling techniques, the HDA-SE-GFF
framework aims to generate richer, more generalizable quality features that help enhance defect
classification accuracy in very large-scale object-oriented software systems along two dimensions:
semantics and structure.

Challenges

Met the problems: (1) imbalanced datasets, (2) removing redundant or unassessed factors, and (3)
indefinite semantic relations and structure contained in the just previous source code. There are many
available models for learning from imbalanced data or for complex social networks, but the resulting
predictive models tend to lack generalization performance and do not achieve high prediction accuracy
due to redundancy limitations. There are also other challenges in developing and maintaining the
integration of different representations in a single scalable and efficient tool framework to obtain
systematic, robust patterns for defect prediction.

Objectives

e Combining SMOTE with Tomek Links to better balance datasets that are not balanced, which
helps classifiers learn more about minority fault classes.

o Using stacked denoising autoencoders to create feature representations that are compact, robust
to noise, and non-redundant, which enhances the model's ability to generalize.

e Using ASTs and PDGs to get both structural and semantic code information for predicting bugs
in a way that takes the context into account.

Hybrid Sampling Strategy

The hybrid method uses SMOTE and Tomek Links to address class imbalance in software defect
datasets. SMOTE creates synthetic samples for the minority class, and Tomek Links discards majority
samples near the decision boundary. Therefore, two data processing methods make the dataset more
balanced and reduce noise, thereby boosting model performance by improving the expression of the
class of interest and decreasing the chance of being wrongly classified in the software defect prediction
task.
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Figure 1. Autoencoder-driven software defect detection framework

Figure 1 Illustration of a strong pipeline for software defect detection using deep learning and feature
engineering. The pipeline uses raw software metrics, which are pre-processed using normalization,
outlier detection, and hybrid sampling (e.g., SMOTE-Tomek). The transformed software metrics are
sent to an autoencoder for feature learning, which yields a compact and meaningful representation of
the data. The feature representation from the latter asset is improved through redundancy reduction,
resulting in low-noise, relevant features. The performance data, along with its corresponding properties,
are delivered to a metric profiling stage, where key software measurements are studied. The finally
optimized features are used in a defect classification model, which improves performance across various
efficiency, accuracy, and scalability metrics for detecting software vulnerabilities in complex systems.

The remainder of this paper is structured as follows: Section 2 examines the related work on hybrid
sampling and semantic-structural code augmentation. In section 3, the methodology is explained. In
section 4, the evaluation setup is given. In Section 5, the results of the paper are discussed and analyzed.
Finally, Section 6 concludes the paper with a discussion of future work.

RELATED WORK

The advancement of software analysis and intelligent systems has been focused in the areas of
incorporating structured knowledge with deep learning in order to process complex relational data
[11][12][13]. The recent study proves effectiveness of using knowledge-based structures along with the
retrieval-augmented generation [1][29]. With the help of Knowledge Graphs (KG) and agentic retrieval,
they demonstrate that contextual awareness can be considerably improved in question-answering context
[14][15]. According to this methodology, a crucial roadmap to the software defect prediction is that the
combination of diagnostic relationships between the static code, in the form of graphs, and dynamic
retrieval systems can fill the gap between the raw source code and the semantics intent [16][17][18].
This kind of integration is important in detection of defects that do not lie on the surface in the code
metrics, but rather lurk in the logic of the system [19] [28].

Moreover, the issue of detecting specific patterns in large datasets is also addressed in another study [2],
which introduces prototypical hash encoding to facilitate the discovery of fine-grained categories [30].
It enables them to perform the task of finding subtle high-dimensional features on-the-fly efficiently,
which is particularly applicable in case of the discovery of rare defect patterns in imbalanced software
repositories [20][21]. Models can be more effective at differentiating between one feature set as being
defective and one being non-defective by encoding complex features into a lower dimensional latent
space, and the sheer high dimensionality of the feature set does not overwhelm the model [22][23]. This
is in line with the requirement of strong feature engineering which is capable of managing the sparseness
and variability of the object-oriented software systems [24][26][27].
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The processing of these intricate graph structures is also made computationally less problematic by
sophisticated mining processes [31]. The study discusses how Graphics Processing Units (GPUs) can
be used to speed up subgraph enumeration and pattern mining [3]. This study demonstrates the need of
hardware accelerated computation in case of large-scale program dependency graphs (PDGs) and
abstract syntax trees (ASTs). In software defect prediction, efficient graph mining enables one to extract
the structural features representing the control and data flow of the application in a very fast way. Using
GPU based architectures the HDA-SE-GFF framework is able to scale to software projects at the
industrial level where the complexity of the code-base would otherwise pose prohibitive computational
overhead.

According to the combination of these previous studies, it can be implied that the future of software
defect prediction will be associated with convergence between structural graph mining and effective
encoding of semantics. Whereas Knowledge Graphs offer the level of context required, prototypical
encoding makes sure that even the infrequent categories of defects are detected, and GPU-based mining
makes sure that the framework is scalable. All these studies suggest that a strong architecture should be
able to only represent what the code is (static metrics), but also how it behaves (structural patterns) and
still be highly computationally efficient.

METHODOLOGY

The HDA-SE-GFF is an effective deep-learning-based, semantic-feature-engineered software defect
prediction framework. It integrates stacked denoising autoencoders with an examination of program
structure via ASTs and PDGs, thereby incorporating both syntactic and contextual code information.
The prototype applies hybrid sampling in the form of adaptation and re-sampling, as well as a between-
class NK decision formulation to ensure balanced class proportions without compromising classifier
optimisation for enhanced prediction. In general, this framework offers a flexible and scalable approach
for enhancing software quality and shortening defect prediction time.
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Figure 2. Hybrid sampling strategy: SMOTE + tomek links

Hybrid SMOTE and Tomek Links sampling for imbalanced defect datasets. The process is initiated
with the raw dataset, which consists of faulty and fault-free readings. The first step is to examine the
class distribution to assess data imbalance. SMOTE (Synthetic Minority Over-sampling Technique) is
then employed to generate synthetic samples for the minority class. After the density ordering, this
study uses the Tomek Links removal algorithm, which identifies and removes border majority samples
for which an instance in the minority class is closer. The final output is a balanced dataset that improves
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the class ratios and reduces overlap in decision boundaries, allowing for better classifier performance
and more appropriate generalization when applied to defect prediction tasks, as shown in Figure 2.

Hybrid sampling adjustment via SMOTE Tomek link Y, is expressed using equation 1,

Yes = T(Yip, zip) — U(T (Yip, ), Zip) (1)

Equation 1 explains the hybrid sampling adjustment via SMOTE Tomek link is applied to the
unbalanced dataset to create the resampled feature set.

In this Y;;is the original imbalanced feature matrix, z;, is the corresponding binary class labels, T(.) is
the SMOTE oversampling operator, U(.) is the Tomek link removal function, and Y, is the resampled
balanced feature matrix.

Denoising auto encoder layer encoding i(™ is expressed using equation 2,
im = @(X(m) xjm=1) 4 C(m)) )

Equation 2 explains the denoising auto encoder layer encoding is the corrupted input at layer is weights,
biases, and activation function transform to get the latent representation.

Deep Feature Extraction

Deep feature extraction in this architecture involves stacked denoising autoencoders, which aim to
extract meaningful and compact representations from the balanced input data. By corrupting original
data with Gaussian or masking noise, the model will extract essential patterns while filtering out
redundancy in the noisy representation. Each hidden layer of the autoencoder compresses the original
data, allowing the architecture to learn the different levels, or hierarchy of representations, which
enhances the accuracy and defensibility of defect prediction, especially for complex software systems.
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Figure 3. Deep feature extraction: stacked denoising autoencoders

The SDAE is a deep feature extractor that is used in the extraction of deep features which is a hierarchical
deep feature extractor that enhances deep features robustness through the introduction of Gaussian or
masking noise to a balanced feature matrix. The model makes use of encoding, bottleneck and decoding
layers that transform the raw data to informative quantities in the form of latent representations. Figure
3 indicates that this multi-resolution process is applicable to eliminate redundancy and learn more
complicated structural dependencies. The features generated at the high level are extremely expressive
and therefore enhance the accuracy and stability of software defect prediction to an extent.
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In this 7~ is the noisy input from layer, X is the weight matrix for layer, c™ is the bias vector
for layer, @(.) is the nonlinear activation, and i ™ is the encoded latent vector.

Auto encoder reconstruction loss M, is expressed using equation 3,

My = %Z ||yj —0 (Q)(y]))”z )
=

Equation 3 explains the auto encoder reconstruction loss is the mean squares deviation of each original
input, and its reconstruction using the encoder-decoder pipeline, and is calculated by the reconstruction
loss.

In this y; is the original feature vector, @(.) is the encoder function, d(.) is the decoder function, o is
the number of training samples, and M,.. is the mean reconstruction loss.

Graph based semantic structural feature aggregation a,, is expressed using equation 4,

Equation 4 explains the graph based semantic structural feature aggregation of each code node in the
semantic-structural tree uses a shared translation matrix and normalized adjacency weights to aggregate
characteristics from its neighbours.
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Figure 4. Semantic-enriched feature fusion (AST + PDG)

A semantic-structural feature extraction scheme using ASTs and PDGs to operate. ASTs provide
information about the syntactic structure of the source code and form a fundamental graph structure that
identifies nodes such as loops, variables, and functions. PDGs, on the other hand, only model data and
control dependencies; they also provide rich contextual dimensions of a code base. Each representation
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is embedded and provided to a feature fusion layer, after which structural (AST) and contextual (PDG)
information can be graph convoluted and pooled. The resulting feature set (with semiotic-semantic level
enhancement) of representations provides an extensive understanding of the behavior of code. This
fusion is essential, as it significantly increases representational capability, thereby increasing the chances
of identifying a software defect by operationalizing and preserving both structurally high-level and
culturally deep source code semantics from the source code in Figure 4.

In this O(w) is the neighbor set of nodes, y;, is the input feature of neighbor node, e, e,,, are the degrees
of node, X}, is the graph transformation matrix, p(.) is the activation function, and a,, is the aggregated

node embedding.

Feature fusion of auto encoder and graph representations g; is expressed using equation 5,

gi=B+i"+1-praq ()
Equation 5 explains the feature fusion of auto encoder and graph representations is the fused feature

using an adjustable interpolation factor, the vector combines the deep auto encoder representation with
graph semantic embedding.

In this ij(M) is the final layer auto encoder feature, a; is the semantic structural embedding, f8 is the fusion
weight hyper parameter, and g; is the final fused feature vector.

Classification output via soft max Z; is expressed using equation 6,

_ exp(xggj + cd)
XR-1exp(xi g; + cx)

(6)

Zj

Equation 6 explains the classification output via soft max is the likely hood over the merged feature
vector and classroom-specific weights and biases are used to calculate of class for sample.

In this g; is the input feature vector, x4 is the class weight vector, ¢4 is the class bias, D is the total
number of defect classes, and Z; is the predicted class probability.

Semantic-Enriched Feature Fusion

The Semantic-Enriched Feature Fusion detects and integrates structural and contextual information from
source code through ASTs and PDGs. ASTs determine and represent the syntactical structure hierarchy,
such as tree diagrams, while PDGs depict the control and data dependence of program statements. These
enriched-extracted features are embedded and fused using Graph-based learning consideration to
generate a collection of rich and context-aware features. The semantically enriched embedded graph
features provide a multifaceted and multi-dimensional sense for detecting finer-grained patterns in
defective code.

The last step in the HDA-SE-GFF procedure is the one of training powerful classification models that
are founded on deep and semantically enriched features, such as the Random Forest or XGBoost. The
maximisation of predictive quality of the model is achieved by cross-validation and hyperoptimizing
embedding dimensions and learning rates. This sophisticated design would allow the detection of bugs
in the actual life repositories with predictability and certainty that would allow the developers to develop
a vulnerability and correct it in its early stages given quality assurance process as shown in Figure 5.
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Figure 5. Classification and evaluation in defect prediction

Algorithm 1: HDA-SE-GFF with Feature Fusion and Softmax Classification
Input:

— Source code data (object — oriented repositories)

— Labels (defective / non — defective)

— Fusionweight B (0 < B < 1)

— Class weights {x1",x5",...,x_D"}

— Class biases {c4,c3,...,c_D}
Output:

— Predicted class probabilities {Z1,%,,...,7Z_D}
Begin
1. Preprocessing:

— Extract Abstract Syntax Tree (AST)

— Extract Program Dependency Graph (PDG)

— if AST or PDG extraction fails:

— Log sample as "incomplete structure"

— Continue to next sample
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else:
— Construct semantic — structural embedding “a_j
2.Hybrid Sampling:
— if dataset is imbalanced:
— Apply SMOTE for oversampling
— Apply Tomek Links to remove overlapping samples

else:

— Proceed to next step

3.Deep Feature Extraction:
— Train stacked denoising autoencoder with:
— 5 layers, 256 hidden units, dropout = 20%,learning rate = 5
— Batch size = 64,embedding dim = 300
— Extract final — layer feature vector “i_j*(M)"
4.Feature Fusion (Equation 5):

— Compute fused feature g_j:

» g =B+ A-P g
—if g_j contains NaN or inf values:
— Normalize or reinitialize af fected values
else:
— Proceed
5.Classification via Softmax (Equation 6):
— Initialize empty list for probabilities: softmax_scores = []
— foreachclassdin{1,...,D}:
— Compute: score_d = exp(x_d” - g_j + c_d)
— Compute denominator: sum_exp = sum of all score_d values
— for each class d:
- 7_d = score_d [/ sum_exp

— Append 7Z_d to softmax_scores
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—if max(Z_d) = threshold:
— Assign class = argmax(Z_d)
else:
— Label as "uncertain prediction”
6. Evaluation:
— Compare predictions with true labels
—if accuracy > baseline:
— Save model
else:
— Adjust ( or re — train autoencoder
End

The algorithm 1 fuses deep autoencoder features and semantic graph embeddings using a weighted factor
(B) to form a robust feature vector. It then applies a SoftMax function over this fused vector to compute
class probabilities. The model improves defect prediction accuracy by handling imbalance, redundancy,
and code structure context.

In summary, deep autoencoding, semantic feature graph fusion, and hybrid sampling to advance
software defect prediction. It captures both structural and contextual features by representing ASTs and
PDGs as semantic graphs, balances training datasets with SMOTE-Tomek, and utilizes statistical
techniques to optimize unsupervised classification through 10-fold cross-validation. HDA-SE-GFF
strongly suggests the model represents an efficient approach to real-world software quality assurance.

EVALUATION SETUP

Dataset Description: The experiment makes use of object-oriented benchmark datasets in the
PROMISE repository such as Lucene, Jure and Velocity. These datasets include fixed metrics of code
such as Halstead and McCabe complexity. The evidence of the experiment has pronounced imbalances
in classes, as the %ages of defects tend to be lower than 25% in hundreds of cases. Such sources also
offer a rich variety of software versions so that the evaluation of the HDA-SE-GFF architecture can be
done against the background of different levels of structural complexity and sparsity of the data.

Software Details: In order to realize the suggested architecture, the researchers used Python 3.8+ as the
primary programming language. The Stacked Denoising Autoencoders are the elements of deep learning
that were created with the help of TensorFlow 2.x and Keras. To balance the data, Imbalanced-learn
(imbalanced) library was used to balance the data with the SMOTE and Tomek Links sampling as well
as Scikit-learn supported such classifiers as Random Forest and XGBoost. Joern was used to decode
into ASTs and PDGs.

Evaluation Metrics

This proposed evaluation framework details a thorough exploration of the architectural and training
parameters of the HDA-SE-GFF model with eight measures of analysis. This outlines the effects of layer
depth, neuron depth, dropout regulation, decay in learning rate, batch gradient sampling, graph structure
consumption, semantics expression quality, and oversampling ratio on the performance of the model.
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Cross entropy classification loss Mgy, is expressed using equation 7,
o D
1 n
Mdmt = — 52 z Zj,d * lOg(Zj,d) (7)
j=1d=1

Equation 7 explains the cross-entropy classification loss calculates the average cross-entropy between
the anticipated probability and the ground truth for every class and sample.

In this z; 4 is the ground truth one-hot label, Z; 4 is the predicted soft max probability, o is the total
number of training instances, D is the number of classes, and M, is the classification loss.

Analysis of auto-encoder layer dynamics ™ is expressed using equation 8,

I(M) = aM(X(M) * aM_l(... al(X(l) * Y + C(l)) + "') + C(M)) (8)
Equation 8§ explains the analysis of auto encoder layer dynamics is to enable systematic abstraction of
latent structure, multi-level encoding is carried out by cascading not linear projections across levels to

yield.

In this Y is the input observation matrix, X is the transformation matrix at layer, ¢ is the bias
vector at layer, d,,(.) is the activation mapping at layer, and I is the encoded output at final depth.

Analysis of hidden layer size selection L,,, is expressed using equation 9,

Ly = [0 % /lm—1 * €] 9

Equation 9 explains the analysis of hidden layer size selection at layer is the hidden unit count is
geometrically scaled from the layer above, with the use of a complication modulation coefficient.

In this [,,, is the hidden dimension at layer, L,,,_; is the previous layer output size, e is the initial input
space cardinality, and @ is the hidden unit scaling coefficient.

Analysis of dropout regularization rate i is expressed using equation 10,
i =M xn, n~Boli(1 - A) (10)

Equation 10 explains the analysis of dropout regularization rate is masked latent vector is produced using
the dropout mechanism by the use of a random Bernoulli mask with a dropout probability.

In this ™ is the latent activation at layer, n is the dropout mask, A is the dropout rate, * is the element
wise multiplication, and 1™ is the regularized latent vector.

Analysis of learning rate dynamics 9, is expressed using equation 11,
Oy =0 * (1 =Vu)™, (11)

Equation 11 explains the analysis of learning rate dynamics with decay parameters and the temporal
learner coefficient decays polynomial to its initial value to stabilize convergence.

In this 9, is the initial learning magnitude, u is the epoch index, V is the schedule multiplier, y is the
decay exponent, and d,, is the adjusted learning rate at time.
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Analysis of batch size influence AyM, is expressed using equation 12,

c
1
BgMe == ) BgM(y;;9) (12)
=1

Equation 12 explains the analysis of batch size influence calculating gradients for parameters using sized
mini-batches, is estimated, and sub-sample averaging is used to stabilize training variance.

In this M_ is the mini batch loss, ¥ is the learnable parameters, c is the batch size, y; is the input sample,
and Ay is the gradient operator.

Graph construction strategy Bjy is expressed using equation 13,
Bjk — {1; lf H(W] _> Wk) € €BTU U EQEH (13)
0, otherwise

Equation 13 explains the graph construction strategy is the connectors from algebraic syntax trees and
programs dependency graphs are encoded to create the adjacency matrix.

In this B is the adjacency representation of semantic graph, wj, w; are the program entity nodes,
€pru, €gen are the edge sets from AST and PDG, and j, k are the node indices.

Analysis of embedding dimensionality D;, is expressed using equation 14,

er
Dy, = —ZCI]' logq; (14)
=

Equation 14 explains the analysis of embedding dimensionality entropy info is used to examine
embedding space dimensionality across latent dimensions, guaranteeing good representational richness.

In this ey is the embedding size, q; is the probability mass across dimension, and D;, is the embedding
information complexity.

Sampling ratio index 0 is expressed using equation 15,

Y2+ v
a:—| i | 1% (15)
[Yog|

Equation 15 explains the sampling ratio index by merging the pruned majority plus synthesized minority
samples in relation to the original dataset. The sampling ratio measures the balanced set size.

In this |Y£?| is the remaining majority of instances post-Tomek, |Vy;5, | is the synthetic minority samples
from SMOTE,

Y, yl is the total initial samples, and 0 is the sampling balance ratio.

The measures help confirm the coupled optimization of deep learning and code semantics assumed
through HDA-SE-GFF by quantitatively modelling each architectural component of the model. Thereby
improving robustness, efficient feature compression, and superior class discrimination. More generally,
this methodology provided a way to tune hyperparameters and test the model’s scaling behavior while
verifying its ability to predict software defects.
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RESULTS OF THE PAPER

Class imbalance is a major hindrance to software fault prediction, as it may introduce bias into models
and prevent the identification of errors associated with rare classes. To address this issue, the HDA-SE-
GFF scheme adopts a hybrid sampling approach based on Tomek Links and SMOTE. In this way, the
dataset is well balanced, which improves fault detection and yields better classification performance

compared with other methods, especially for rare yet important faults.
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Figure 6. The analysis of the autoencoder layer

The HDA-SE-GFF architecture is used in the Stacked Denoising Autoencoder (SDAE) to specify the
hierarchy of the feature extraction of the architecture, in terms of its depth. It can be observed that the

model converts the raw measurements of software in abstractions in a sequential manner by using five
layers that are designed. In the low echelons where layers are shallow, simple patterns of semantics can
be found and in deep layers, more complicated semantic patterns are available. This 5-layer (Figure 6)
trade-off is not very deep that it will squash and reveal latent defect-prone features or very deep that it
will cause over fitting or vanishing gradients. Lastly, this architecture will not just be perfectly modelled

but generalization will as well be necessary to predict software defects erroneously.

Bl GosN
[

DA-SE-GFF

400

(%]

[=]

=]
1

200

Hidden Layer size

100

40 60

Number of samples

Figure 7. The analysis of hidden layer size

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N ” 34

827



Bhavani, P. et al: A Robust feature engineering ...... Archives for Technical Sciences 2025,34(3),815-832

Hidden layer size refers to the number of neurons in an autoencoder at each layer and the threshold for
the autoencoder's representation capacity. In HDA-SE-GFF (Figure 7), a hidden layer size of 256
enables the model to extract a sufficient level of detail from the high-dimensional feature vectors without
being overly complex validated using equation 9. A relatively larger hidden layer size can learn more
complex patterns in the alterations. Still, it also carries the risk of overfitting, particularly since there is
limited publicly available data from JS effort tracker tools. Also, under-fitting can occur at small sizes
and result in the loss of some critical information. It's essential to select an appropriate hidden layer size
to preserve the code's semantic and structural features when it's extracted.
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Figure 8. The analysis of dropout rate

Based on Equation 10, HDA-SE-GFF model involves the use of 20 % dropout rate to stabilize
overfitting. The training process leads the network to establish robust and redundant representations
rather than having a reliance on the specific nodes by deactivating the neurons randomly. This kind of a
balanced regularization offers stability in the learning and generalizability of the model balancing
successful feature learning and generalizability show in figure 8.
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Figure 9. The analysis of learning rate
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Learning rate in HDA-SE-GFF architecture plays an important role in controlling the weight update and
stable convergence. It was also decided to use a learning rate of 5 to maximise the performance of the
autoencoder without the model becoming trapped in the minima in the loss landscape. This particular
rate is such that the model slowly reduces loss, and all the essential semantic content of the defect-related
features is retained in the deep architecture. This configuration provides the network with an opportunity
to take the optimal loss function and be sensitive to minute patterns in the source code by balancing
between speed and stability in training as demonstrated in Figure 9.
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Figure 10. The analysis of batch size

In the HDA-SE-GFF architecture (Figure 10), every batch size of 64 is used to find the trade off point
between the efficiency of the memory and the stability of the gradient. Even though bigger batches
accelerate the training, this often leads to sharp minima and poor generalization. Smaller batches, on the
other hand, produce less noise but better generalization. The batch of 64 samples ensures that the
estimates of gradients are always consistent which is required to deal with the complex semantic-
structural features that are realized after the ASTs and PDGs.

Table 1. The graph construction strategy

Parameter Description Value/Setting
Type of graph used for joint .
. +
Graph Type representation AST + PDG (Hybrid Graph)
.. Variables, Functions, Loops,
Node Types Entities represented as nodes Conditions, Blocks

Average number of edges per

Graph Size (avg. edges) 80-300 edges

method graph
Graph Size (avg. nodes) Average number of nodes per 40-150 nodes
P & method graph
Graph Normalization Preprocessing to maintain . o
. . - Symmetric normalization
Technique numerical stability
Graph Traversal . Message Passing / Attention-based
Algorithm Used for feature aggregation Aggregation

In HDA-SE-GFF, syntactic and control-flow relationships are represented by use of hybrid graph
building with ASTs and PDGs. Authenticated in Equation 13, these charts normally include 40 to 150
nodes and 80 to 300 edges per approach. Symmetrical normalization makes the features aggregation
numerically stable. Through message passing or attention, the model is able to learn complex
dependencies of variables and functions at the structural hierarchy of the code represented in Table 1.
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Figure 11. The analysis of embedding dimension

The embedding size in HDA-SE-GFF is 300, in order to embed components of code in a descriptive
feature space. This dimension will ensure that semantic and structural patterns are represented in detail
in a balance to Equation 14. The 300 selection averts the overfitting as a result of the low-dimensionality
as well as sparsity because of the large size. Models that are expressive and computationally efficient
through the trade-off allow sound semantic enrichment of deep learning tasks on heterogeneous source
code shown in figure 11.

Table 2. Sampling ratio (SMOTE: Tomek)

Parameter Description Value/ Setting
. . . +
Sampling Technique Method used to handle class imbalance SMOEI?nk;Fomek
SMOTE: Tomek Ratio Proportion of synthetic qversamphng to 60-40
undersampling
SMOTE Nearest Number of nearest neighbors for generating synthetic 5
Neighbors samples
Class Distribution (Post) | %age of majority vs. minority classes after sampling | Approximately 50:50
Impact on Recall Improvement in recall due to rebalancing +15% (average)

To address the problem of unequal classes, HDA-SE-GFF model is a SMOTE-Tomek sampling.
SMOTE generates artificial minority in 60:40 proportions, and Tomek Links eliminates border-line
noise. It is a compound approach that serves in the rearrangement of the distorted distributions (e.g.
85:15) into a more balanced 50:50 in the formation of an average increase of +15 % in recall in table 2.
The model is very good in identifying the rare defects and in cases of deep auto-coding and fusing
semantic graphs. The architecture has proven to be more faithful and stronger than normal methods and
results have been given that the architecture can be scaled to a massive size to identify bugs in running
modern software systems.

CONCLUSION

The proposed framework, HDA-SE-GFF, constitutes a comprehensive and intelligent methodology for
software defect prediction that alleviates key issues, including class imbalance, highly redundant feature
domains, and a lack of contextual structural information [25]. The performance of classification and
generalization is enhanced by SMOTE-Tomek hybrid sampling, stacked denoising autoencoders, and
semantic-structural graph feature fusion on ASTs and PDGs. With deep autoencoding to determine the
best technical settings, this model used five layers of 256 units with 20% dropout and a learning rate of
0.001, producing embeddings of 300 dimensions as a strong yet concise feature representation. Through
experiments on object-oriented resources, it showed that HDA-SE-GFF outperforms its base methods
across accuracy, recall, and robustness. It is promising if it scales, and it can improve software quality
assurance and guarantees in difficult, real-world, and complex development environments. Future study
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would like to further develop HDA-SE-GFF towards more complete cross-project defect prediction and
a multilingual codebase for better scalability and flexibility. There is another possibility that future work
could leverage dynamic code analysis and real-time bug-localization techniques, since these approaches
might lead to more accurate defect prediction. Furthermore, plan to introduce explainable Al techniques
into the workflows of HDA-SE-GFF to interpret why models make decisions, thereby increasing
trustworthiness and utility for software engineering.
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