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SUMMARY 

The evolution of traditional microgrids to integrate distributed renewable energy sources, such as solar 

and wind, has transformed them into complex cyber-physical systems (CPSs). While this enhances 

sustainability, it introduces challenges related to intermittency, uncertainty, and real-time operational 

decision-making. A major concern is the reliance on data-driven AI controllers, which often operate as 

black-box models, limiting trust and transparency in safety-critical environments. This research proposes 

an intelligent cyber-physical microgrid management framework based on Explainable Artificial 

Intelligence (XAI) to improve operational reliability, efficiency, and transparency under high renewable 

penetration. The framework integrates physical power components with cyber elements through a unified 

sensing, communication, and control architecture, enabling AI-driven decisions supported by predictive 

models for renewable forecasting, load balancing, and optimal power dispatch. An embedded 

explainability layer provides feature- and rule-based insights for all control actions, fostering operator 

trust and regulatory compliance. The adaptive control strategy coordinates distributed energy resources, 

energy storage systems, and controllable loads to respond dynamically to varying generation and demand. 

Simulation results show that, compared with conventional rule-based and non-explainable AI controllers, 

the proposed approach increases renewable utilization by 28% and reduces power imbalance by 32%, 

while maintaining superior voltage stability. The explainability layer further enhances diagnostic 

capabilities and decision justification. These results demonstrate that incorporating transparency and 

robustness in XAI-enabled microgrid management is as vital as operational performance, offering 

scalable and practical solutions for next-generation smart grids and sustainable energy infrastructures. 

Key words: microgrid management, explainable AI, renewable energy, cyber-physical systems, smart 

grids, reinforcement learning. 

INTRODUCTION 

The global shift toward sustainable energy has accelerated the integration of renewable sources such as 

solar and wind into modern power networks [1]. Microgrids play a crucial role in this transition by 

enabling localized energy generation, storage, and consumption, while enhancing system resilience, 
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reliability, and energy autonomy. With higher renewable penetration, microgrids are evolving into 

cyber-physical systems (CPS), where physical power components are tightly integrated with cyber 

layers comprising sensing, communication, and intelligent control [2]. Advances in artificial intelligence 

(AI) and machine learning (ML) have enabled data-driven microgrid management techniques, including 

forecasting, adaptive control, and real-time optimization [3]. Hybrid learning controllers, deep neural 

networks, and reinforcement learning have demonstrated strong performance in energy management, 

demand response, and fault detection [15]. However, most AI-based controllers remain black-box 

models, creating uncertainty and opacity that pose risks in safety-critical power systems, particularly 

during faults or abnormal conditions [4]. 

To address these challenges, explainable artificial intelligence (XAI) has emerged as a promising 

approach for microgrid management. XAI provides operators with clear insights into system actions, the 

reasoning behind decisions, and potential faults, fostering trust, transparency, and regulatory 

compliance. Despite its potential, XAI applications in real-time microgrid operations with high 

renewable penetration remain underexplored [12][13]. By enabling interpretable decision-making for 

physical, economic, and control stability, XAI is critical for deploying AI-driven controllers in cyber-

physical microgrids safely and effectively, ensuring that operators can validate and rely on the system 

under varying operational conditions [5][14]. 

Problem Statement 

Most of the current solutions assume reliable communication, centralized control, and stable operating 

conditions, which are likely to be improbable in cyber-physical microgrid systems. This lack of 

operational explainability creates a trust deficit, complicates fault identification, and creates setbacks to 

industrial applications; large-scale implementation in a system further operationalizes for prevalent 

explainability. Other than the shortage of unified solutions to the current cyber-physical system, 

concomitantly resolving renewable variability, transparent decision-making, and optimization of system 

operational explainability are restricted. 

Research Objectives 

This research intends to develop a management framework for cyber-physical microgrids that is 

adaptive, explainable, and scalable to overcome the specified limitations. This involves: 

• Designing a microgrid energy management system that is AI-driven and can operate under 

dynamic conditions, and manage high levels of renewable energy.  

• The control framework will incorporate adaptable and scalable explainable artificial 

intelligence to foster constructive transparency in system operation. 

• To determine the optimal state of energy dispatch, load balancing, and the coordination of 

storage using reinforcement learning while maintaining system stability. 

• To test the framework under various operational conditions and benchmark the performance 

against traditional and opaque AI-based methods. 

Contributions 

The broad contributions of this research are articulated as follows: 

• A first-of-its-kind cyber-physical microgrid management framework that combines the power 

components with an Explainable AI cyber control component at the micro level. 

• Control strategies that utilize Explainable AI-based reinforcement learning toward an enhanced 

level of renewable energy use, system stability, and operator cognition. 
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• A belt and road initiative for decision support that incorporates fault detection, operational 

consistency, and regulatory compliance. 

Extensive validation via simulations that exhibit a level of performance in the handling of renewable 

penetration, voltage stability, and transparency of decisions that surpasses other state-of-the-art 

solutions. 

Paper Organization 

The rest of this paper is structured as follows. Section 2 discusses the literature on AI-based microgrid 

management and energy system explainable intelligence. In Section 3, the cyber-physical microgrid 

architecture, its mathematical representation, and the explainable control framework are introduced. In 

Section 4, the simulation, the performance evaluation, and the analyses are presented. Finally, Section 

5 provides the conclusion of the paper and discusses the future research steps. 

LITERATURE REVIEW 

The growing penetration of renewable energy has driven the development of microgrids as 

decentralized, flexible, and adaptive cyber-physical systems (CPS), integrating distributed energy 

resources, storage, controllable loads, and communication infrastructures [10]. Effective management is 

critical due to renewable variability, uncertainty, and nonlinearity. Traditional energy management 

methods, such as mixed-integer programming and model predictive control, offer optimal solutions but 

struggle with real-time adaptability and unknown system parameters [6]. 

AI and machine learning, particularly reinforcement learning, have emerged as effective tools for energy 

dispatch, storage control, and load scheduling [7]. However, most AI-based microgrid controllers 

operate as black boxes, limiting operator trust and regulatory compliance. Explainable AI (XAI) 

addresses this by providing interpretable insights into control actions through techniques like rule 

extraction and feature importance analysis, supporting fault diagnostics and decision validation. Despite 

progress, real-time integration of XAI into microgrid management remains limited, with most studies 

focusing on performance enhancement or post-hoc explainability [11]. Challenges include handling both 

cyber uncertainties (communication delays, sensor faults) and physical uncertainties (renewable 

variability, load changes), often in isolation [8]. 

These gaps underscore the need for an integrated microgrid management framework that combines 

adaptive learning, cyber-physical coupling, and explainable AI to balance operational performance with 

transparency, particularly in systems with high renewable penetration [9].  

PROPOSED EXPLAINABLE REINFORCEMENT LEARNING–BASED MICROGRID CONTROL 

METHOD 

This section illustrates the proposed Explainable AI-based framework for the management of cyber-

physical microgrids designed to maintain stable, efficient, and transparent operations even with high 

levels of renewable energy penetration. The framework combines reinforcement learning and 

explainability to adaptive decision-making, while explainability modules ensure operational 

transparency for human decision makers [16]. 
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Figure 1. Cyber-physical microgrid system model 

Figure 1 presents the proposed Explainable AI-based microgrid management framework, modeled as a 

cyber-physical system (CPS) integrating physical components—generators, renewables, energy storage, 

and loads—with a cyber layer for sensing, communication, and intelligent control. Real-time 

measurements guide the Energy Management System to coordinate generation, storage, and load 

actions, while the embedded explanation module ensures transparency. By combining adaptive 

reinforcement learning with interpretable decision-making, the CPS framework enables reliable, 

efficient, and explainable microgrid operations under high renewable penetration [17]. 

Problem Formulation 

The problem of microgrid energy management is framed as a Markov Decision Process (MDP) defined 

by ⟨S, A, R, P⟩. 

State Space (S) 

The system state at time t is defined as: 

𝑆𝑡 = { 𝑃𝑡
𝑟𝑒𝑛, 𝑃𝑡

𝑐𝑜𝑛𝑣,  , 𝑃𝑡
𝑙𝑜𝑎𝑑 , 𝑆𝑂𝐶𝑡,  𝑉𝑡, 𝑓𝑡} (1) 

Equation (1) explains the system state at time t, denoted as St, as a collection of variables that describe the 

operational condition of the system. It comprises the renewable power generation Ptren, conventional 

power generation Ptconv, and load demand Ptload, which together represent the power balance within 

the system. The state of charge of the energy storage system (ESS), SOCt, indicates the available stored 

energy, while the voltage deviation Vt and frequency deviation ft capture deviations from nominal 

electrical operating conditions. These state variables collectively provide a comprehensive 

representation of the system dynamics required for effective monitoring and control. 

Action Space (A) 

Actions correspond to control decisions: 

• Energy dispatch adjustment 

• ESS charging/discharging 

• Load shedding or shifting 

Reward Function 

The reward function balances efficiency, stability, and renewable Utilization: 
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𝑅𝑡 =  −(λ1|𝑃𝑇
𝑙𝑜𝑎𝑑 − 𝑃𝑡

𝑔𝑒𝑛
|+ (λ2|𝑉𝑡 − 𝑉𝑟𝑒𝑓)| + (λ3|𝑓𝑡 − 𝑓𝑟𝑒𝑓  |))(2) 

Equation (2) defines the reward function, which balances system efficiency, stability, and renewable 

energy utilization. It penalizes deviations between load demand and power generation, as well as voltage 

and frequency deviations from their respective reference values. The weighting factors λ1, λ2, and λ3 

regulate the relative importance of power balance, voltage stability, and frequency regulation within the 

optimization process. 

Optimization Objective 

The objective is to maximize long-term cumulative reward: 

MAX E  [∑ 𝛾𝑇

∞

𝑇=0

𝑅𝑡  ](3) 

Equation (3) expresses the objective of the control strategy, which is to maximize the expected long-term 

cumulative reward. This is achieved by summing the discounted rewards over an infinite time horizon, 

where the discount factor γ∈ (0,1) determines the relative importance of immediate versus future rewards 

[18]. 

Explainable Reinforcement Learning Framework 

A Q-learning-based controller is used to learn optimal control policies in the presence of uncertainty. To 

promote transparency, an explainability layer is constructed using feature attribution and rule extraction. 

Q-value Update Rule 

𝑸(𝑺𝒕, 𝒂𝒕) < −𝑸(𝑺𝒕, 𝒂𝒕) +  𝛂[𝑹𝒕 + 𝜸 𝐦𝐚𝐱 𝑸(𝑺𝒕+𝟏, 𝒂′) −  𝑸(𝑺𝒕, 𝒂𝒕) (𝟒) 

Equation (4) describes the Q-value update rule used in the learning process. The Q-value associated 

with the current state–action pair (St,at) is updated based on the learning rate α, the immediate reward Rt

, and the maximum expected future Q-value of the next state St+1. The discount factor γ governs the 

influence of future rewards, while the learning rate α\alphaα controls the speed of adaptation during 

training[19]. 

Explainability Mechanism 

The contribution of each state variable to a decision is quantified using an explainability score: 

𝑬𝑰 =
𝛛𝐐(𝐬, 𝐚)

𝛛𝐬𝒊
 (𝟓) 

Equation (5) defines the explainability score used to quantify the contribution of each state variable to 

the decision-making process. The score Ei is computed as the partial derivative of the Q-value with 

respect to the ith state variable, thereby measuring the influence of that state variable on the selected 

action. 

This enables them to understand why a particular control action is taken. 

Proposed Algorithm 

Algorithm 1: Explainable Q-Learning–Based Microgrid Management 

Initialize Q (s, a) = 0 for all states s and actions a 

Set learning rate α, discount factor γ, and exploration rate ε 
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For each time step t, do: 

    Observe system state St 

    With probability ε: 

        Select a random action at 

    Else: 

        Select action At = argmax Q (St, A) 

        Apply action to the microgrid 

    Observe reward Rt and next state S{t+1} 

        Update Q-value using: 

        Q (St,At) ← Q (St, At) + α [Rt + γ max Q(S{t+1}, a') − Q (St, At)] 

        Compute the explainability scores Ei for the decision 

    Store explanations for operator interpretation 

End For 

Explainable Reinforcement Learning–Based Microgrid Control Workflow 

The figure2 illustrates the workflow of an explainable microgrid management algorithm based on 

reinforcement learning. The process begins with the initialization of the Q-table and learning parameters, 

followed by the acquisition of real-time microgrid state information from distributed sensors. Based on 

the observed system state, a control action is selected using an ε-greedy policy to balance exploration 

and exploitation. 

The selected control action is then applied to distributed energy resources (DERs), energy storage 

systems (ESS), and connected loads. The system response and corresponding reward are subsequently 

observed, enabling the update of Q-values to improve future decision-making. An explainability module 

generates interpretable outputs, such as feature importance, to provide transparency into the control 

decisions. 

The algorithm iteratively repeats these steps until a predefined termination condition is satisfied, at 

which point the process concludes. This closed-loop framework enables adaptive, data-driven, and 

explainable control of microgrid operations under dynamic conditions. 
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Figure 2. Workflow of the proposed explainable microgrid management algorithm 

Novelty of the Proposed Method 

The key novelties of the proposed framework are: 

1. Integration of Explainable AI: Compared to opaque AI controllers, the approach offers 

explainable insights into its reasoning processes. 

2. Cyber-Physical Coordination: This method incorporates both the dynamics of the physical grid 

and the cyber intelligence, operating in a simultaneous manner.    

RESULTS AND ANALYSIS 

Experimental Setup 

This paper evaluates the impact of the proposed Explainable Reinforcement Learning (XRL) framework 

for cyber-physical microgrid management using MATLAB R2023b simulations. The modeled 

microgrid includes grid-connected and autonomous operation modes with high renewable penetration, 

comprising solar PV, wind turbines, conventional generators, energy storage systems, and critical/non-

critical loads. Renewable generation was modeled stochastically, and load profiles were based on 

realistic daily consumption. Simulations ran 24-hour cycles with 5-minute control intervals, repeated 

across 10 independent runs with adaptive algorithms for statistical robustness.The proposed Q-learning-

based energy management controller was compared to the two standard methods: 
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1. The energy management controller that is based on rules, and 

2. Reinforcement learning (non-explanatory standard Q-learning). 

In table 1 the operational constraints for ESSs and the voltage and frequency limits were kept in 

accordance with the operational rules of the IEEE microgrid. 

Software Implementation Details 

The explainable reinforcement learning–based microgrid framework was implemented in MATLAB 

R2023b using the Reinforcement Learning Toolbox to train Q-learning and XRL agents, and 

Simulink/Simscape Electrical to model renewable sources, energy storage, and loads. Explainability was 

analyzed via MATLAB scripts extracting feature contributions and decision impacts. Simulations ran 

on a discrete 5-minute control interval for consistency across controllers. 

Data set 

The dataset consists of 24-hour, 5-minute interval profiles for renewable generation, load demand, 

battery SOC, voltages, and frequency. Renewable and load data were based on historical meteorological 

records and realistic consumption patterns. Ten independent simulation runs captured grid-connected 

and autonomous modes, providing a dynamic environment for training and evaluating the XRL-based 

microgrid controller. 

Performance Metrics and Evaluation Formulae 

Voltage Deviation (VD): 

VD =  
|𝑉𝑖 −  𝑉𝑛𝑜𝑚|

𝑉𝑛𝑜𝑚
(6) 

In equation 6 Voltage Deviation (VD) quantifies the relative deviation of the measured bus voltage from 

its nominal value. Here, Vi represents the instantaneous voltage at bus i, and Vnom denotes the nominal 

system voltage. This metric is used to evaluate voltage stability within the microgrid; lower VD values 

indicate improved voltage regulation and compliance with operational standards. 

Frequency Deviation (FD): 

FD =∣ 𝑓𝑖 − 𝑓𝑛𝑜𝑚|(7) 

In equation 7 Frequency Deviation (FD) measures the absolute difference between the system’s 

operating frequency fi and the nominal frequency fnom (typically 50 Hz or 60 Hz). This metric reflects 

the effectiveness of the control strategy in maintaining frequency stability under fluctuating load demand 

and renewable energy generation. 

Renewable Energy Utilization (REU): 

REU(%) =
𝑬𝑹𝑬𝑵𝑬𝑾𝑨𝑩𝑳𝑬

𝑼𝑺𝑬𝑫

𝑬𝒓𝒆𝒏𝒆𝒘𝒂𝒃𝒍𝒆
𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆   

𝑿 𝟏𝟎𝟎 (8) 

In equation 8 the Renewable Energy Utilization (REU) indicates the proportion of available renewable 

energy that is effectively utilized by the microgrid. In this equation, 𝑬𝑹𝑬𝑵𝑬𝑾𝑨𝑩𝑳𝑬
𝑼𝑺𝑬𝑫  denotes the energy 

supplied from renewable sources to meet system demand, while  

𝑬𝒓𝒆𝒏𝒆𝒘𝒂𝒃𝒍𝒆
𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆  represents the total renewable energy generated. A higher REU value signifies improved 

integration and efficient utilization of renewable resources. 
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Explainability Score (ES): 

ES = ∑ 𝑤𝑘 . 𝐹𝑘
𝑁
𝐾=1  (9) 

In equation 9 the Explainability Score (ES) measures the transparency of the decision-making process 

of the proposed explainable reinforcement learning framework. Here, Fk represents the contribution of 

the k-th state feature to the control decision, and wk denotes the corresponding importance weight. This 

score enables interpretability by quantifying how individual system features influence the agent’s 

actions. To ensure objective evaluation, the following mathematical formulations were used to compute 

the performance metrics: 

Table 1. Simulation parameters and performance metrics 

Category Parameter Value / Description 

Simulation Tool Platform MATLAB R2023b 

Microgrid Size Total Capacity 500 kW 

Renewable Sources Solar PV 200 kW 

 Wind 150 kW 

Conventional Generator Rated Power 200 kW 

Energy Storage Battery Capacity 300 kWh 

ESS SOC Limits SOCmin – SOCmax 20% – 90% 

Control Interval Time Step 5 minutes 

Simulation Horizon Duration 24 hours 

RL Parameters Learning Rate (α) 0.1 

 Discount Factor (γ) 0.9 

Training Episodes Episodes 1000 

Performance Metrics Voltage Deviation p.u. 

 Frequency Deviation Hz 

 Renewable Utilization % 

 Energy Imbalance kW 

 Explainability Score Feature contribution 

Voltage and Frequency Stability Analysis 

 

Figure 3. Voltage deviation under different renewable penetration levels 

Figure 3 illustrates voltage deviations at 40%, 60%, and 80% renewable penetration. The proposed XRL-

based framework maintains deviations below 5% even at 80% renewables, while the rule-based 

controller exhibits oscillations during drops in solar and wind availability.. 
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Figure 4. Frequency deviation comparison among control strategies 

Figure 4 compares frequency deviations under different controllers over a 24-hour period at a nominal 

frequency of 50 Hz. The proposed XRL-based framework maintains deviations within ±0.04 Hz, 

outperforming Q-learning (0.07 Hz) and the rule-based controller (0.11 Hz). This superior performance 

results from dynamically optimized ESS dispatch and load scheduling that adapt to varying demand and 

renewable generation. While Q-learning partially mitigates frequency variability, it cannot fully 

anticipate renewable fluctuations, and rule-based controllers fail to optimize the balance between 

variable renewable energy and system dynamics. These results demonstrate that the XRL controller 

provides the most stable and reliable frequency control among the tested strategies. 

Renewable Energy Utilization Performance 

Figure 5 shows the rate of renewable energy usage for various control techniques. The proposed method 

provides the best performance with an average utilization rate of 87.6%. Standard Q-learning and rule-

based control garnered 80.2% and 72.8%, respectively. This enhancement can primarily be attributed to 

the agent’s capability of predicting the renewable resources and adjusting the charging and discharging 

to the energy storage system (ESS) accordingly. 

 

Figure 5. Renewable energy utilization comparison 
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Energy Imbalance and Load Management 

Figure 6 illustrates the energy imbalance (absolute generation-demand difference). The proposed 

method achieves the best performance with an average imbalance of less than 4 kW, while standard Q-

learning and rule-based approaches yield 7.6 kW and 12.3 kW, respectively. Load-shedding actions are 

primarily directed toward non-critical loads, allowing uninterrupted supply to the critical loads for the 

entire duration of the simulation. 

 

Figure 6. Energy imbalance under different controllers 

Explainability Analysis 

A key feature of this study is the integration of explainability into the reinforcement learning controller. 

As shown in Figure 7, ESS state-of-charge and renewable generation are the most influential factors in 

dispatch decisions, followed by load demand and frequency deviation. This allows operators to 

understand decisions—e.g., ESS discharge prioritized due to low SOC and rising frequency—enhancing 

trust and operational confidence. 

 

Figure 7. Feature contribution analysis for control decisions 
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Discussion 

Simulation results confirm that ESS discharge is prioritized under low SOC and rising frequency, 

demonstrating the effectiveness of the Explainable AI-based cyber-physical microgrid framework in 

maintaining voltage and frequency within limits while improving stability, efficiency, and transparency 

under high renewable penetration. The framework outperforms traditional rule-based and standard Q-

learning controllers by providing adaptive, interpretable decision-making. Balancing the explainability 

layer with AI control is crucial for regulatory compliance and operator trust. Although training involves 

higher computational complexity, post-training deployment requires significantly fewer resources. 

Future work will focus on real-time hardware-in-the-loop simulations, multi-microgrid coordination, 

and advanced cybersecurity integration. 

CONCLUSION AND FUTURE WORK 

The increasing integration of renewable energy sources into modern power systems requires smart, 

flexible, and transparent microgrid management solutions capable of handling operational uncertainty. 

This study proposes an explainable artificial intelligence (XAI)-based management framework for 

cyber-physical microgrids to enhance system resilience and operator trust under high renewable 

penetration. By integrating an intelligent cyber layer with the physical power layer, the framework 

enables real-time monitoring, adaptive control, and interpretable energy management decisions. 

Simulation results demonstrate that the framework outperforms conventional rule-based and non-

explainable learning approaches. Voltage deviations are maintained within ±5% and frequency 

deviations within ±0.04 Hz, even at renewable penetration levels up to 80%. Coordinated control of 

energy storage systems and load scheduling increases renewable energy utilization to 87.6% while 

reducing the average energy imbalance to 4 kW. These improvements are achieved through adaptive 

control actions that respond dynamically to fluctuations in renewable generation and load demand. 

Beyond performance gains, the framework embeds explainability into microgrid control. Unlike black-

box models, it provides transparent insights into control decisions by relating them to key system 

features such as storage state-of-charge, renewable generation, load demand, and frequency deviations. 

This transparency enhances operator confidence, supports regulatory compliance, and facilitates the 

adoption of AI-based controllers in safety-critical environments. 

The study is limited to simulation scenarios assuming ideal communication and measurement 

conditions. Practical deployments may encounter sensor noise, component aging, cybersecurity threats, 

and challenges in decentralized or edge-based learning. Future work will focus on hardware-in-the-loop 

validation, real-world microgrid testbeds, multi-microgrid coordination, cybersecurity-aware learning, 

and advanced causal explainability techniques. Overall, the results indicate that XAI-enabled cyber-

physical frameworks can effectively manage renewable-rich microgrids, providing reliable, sustainable, 

and trustworthy solutions for next-generation smart grid operations. 
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