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SUMMARY 

Industrial systems increasingly rely on Industrial Internet of Things (IIoT) sensors for real-time 

monitoring and predictive maintenance. However, most existing digital twin–based monitoring solutions 

depend on static or black-box machine learning models, limiting interpretability, operator trust, and safe 

deployment in safety-critical environments. In response to these challenges, the author develops the 

Adaptive Hybrid Digital Twin with Causality-Aware Explainable Artificial Intelligence (HADT-C-XAI) 

framework to offer transparency and intelligence in industrial monitoring. The framework describes three 

integrated layers: (i) acquisition of real-time sensors, (ii) continually synchronized hybrid digital twin 

modeling, which is the integration of physics and data hybrid modeling and (iii) an intelligent analysis 

layer where LSTM-based anomaly detection is ungraded with explainable feature attribution. A closed-

loop learning mechanism updates the model dynamically to adapt to operational drift while generating 

interpretable fault causes for operator decision support. Experiments were conducted on a multi-sensor 

industrial testbed containing 120 hours of vibration, temperature, acoustic, and rotational data. The 

implemented system shows a 94.8% detection accuracy, 95.4% recall, and a 4.1% low false alarm rate, 

which surpasses standard LSTM (88.5%) and threshold-based monitoring (82.9%). With edge-level 

inference, detection latency has been reduced to 26-30 ms, which allows for real-time deployment. 

Results demonstrate that integrating adaptive digital twins with explainable AI improves reliability, 

transparency, and fault diagnosis while maintaining computational efficiency. The proposed framework 

provides a scalable and trustworthy solution for predictive maintenance, Industry 4.0 applications, and 

cyber–physical system monitoring. 

Key words: digital twins, explainable artificial intelligence, adaptive modeling, intelligent industrial 

monitoring, causality analysis, predictive maintenance, cyber–physical systems, industry 4.0.1.  
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INTRODUCTION 

Developments in industrial automation and cyber-physical systems have increased the intricacy of 

modern industry operations. While maintaining reliability, safety, and efficiency, industrial assets must 

adapt to new uncertainties and variable operating conditions. Operational continuity, resource 

optimization, and early fault detection necessitate real-time monitoring. However, static models, 

periodic checks, and traditional monitoring practices frequently overlook system dynamics and complex 

environments in industrial settings [1][2].  

With the advent of the Industrial Internet of Things (IIoT) Continuous monitoring of Industrial assets 

makes it possible to gather, retain, and analyze heterogeneous sensor data without interruption. This data 

allows for the development of intelligent monitoring systems and the creation of predictive maintenance 

so long as the system operates without discontinuity, and so long as the data is raw, unprocessed, and 

reliable. During the evolution towards the smart manufacturing phase of Industry 4.0, more adaptive, 

and dependable monitoring systems are becoming demanded [3]. 

Digital twin technologies help provide potential solutions by creating and maintaining real-time digital 

representations of physical industrial systems. Digital twins assist in the performance of predictive 

maintenance by monitoring system conditions and continuously updating system models based on real-

time synchronized sensor data [3]. Even with these benefits, many current applications of digital twins 

use black-box models for machine learning which limit understanding and the ability to adopt these 

technologies for use in industrial applications with strict safety and regulatory concerns [4].   

Explainable Artificial Intelligence (XAI) provides the ability to overcome these challenges by creating 

and providing human understandable justification for a model’s decision, which in turn aids in the 

understanding of errors, the identifcation of causes of a problem, and the fostering of trust by the operator 

[5]. Yet, the use of explainable intelligence combined with adaptive digital twin-based industrial 

monitoring in real-time situations continues to be very limited. 

 

Figure 1. Digital twin–based intelligent industrial monitoring architecture with explainable AI integration 

In Figure 1, a digital twin approach is applied to intelligent industrial monitoring. The framework 

involves real-time sensor data streamed from physical assets and synchronized to a digital twin. 

Analytics are intelligent for the purpose of anomaly detection and condition monitoring. The explainable 

AI layer sheds light to fault causation and system health to aid decision-making. [6] 
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Problem Identification 

The significant advancement of digital twin and machine learning technologies is evident in the field of 

industrial monitoring. However, the majority of the available solutions continue to use a black box 

approach and rely represent systems in a static manner. The black box approach in conjunction with a 

static system representation, use of AI and digital twins leaves a significant gap within the field of 

industry monitoring, especially in the areas of early fault detection, root cause detection, and proactive 

maintenance. This is highly apparent in complex and safety critical industrial systems.  [7] 

Objective of the research 

The main aim of this research is to create a framework that is digital twin based and adaptive in the 

explainable form for the purpose of monitoring industrial systems in real-time. This involves the 

following specific aims:  

• Develop an architecture for real-time digital twin models that are synchronized to physical 

industrial assets and can operate in real time.  

• Develop and implement flexible machine learning models for predictive monitoring and anomaly 

detection within the framework. 

• Integrate system behavior and fault causation into the framework to obtain explainable AI. 

• Construct the framework and conduct simulations and comparative studies to assess it. 

Contributions   

The primary contributions of this work are:   

• A digital twin–based intelligent monitoring framework that incorporates adaptive learning and 

explainable AI for the first time.   

• An enhancement of the fault diagnosis, root cause analysis, and operator trust aspects, driven by 

explainability, which directly impacts the trust of the operator.   

• An adaptable and versatile solution applicable to Industry 4.0 and cyber-physical systems. 

Paper Organization   

The remainder of this paper is structured as follows. A review of prior work on digital twin technologies 

and intelligent industrial monitoring is presented in Section 2. In Section 3, we present the proposed 

system architecture and explainable monitoring methodology. Section 4 is devoted to result presentation 

and comparative analysis. In Section 5, we summarize the paper and identify avenues for future work.. 

LITERATURE REVIEW 

Advancements in automation and interconnectivity in industry have increased the need for sophisticated 

monitoring and diagnostics systems that operate seamlessly in shifting and uncertain environments. For 

industrial digital systems to be safe, efficient, and reliable, they must be continuously monitored. This 

has led to the development of digital twins, smart condition monitoring, machine learning for fault 

identification, and explainable artificial intelligence (XAI) [8].   

Digital Twins in Industrial Systems 

Digital twins enable virtual reproductions of real-time sensor monitored systems. As digital twins did 

have a long-derived history as physics-based simulation systems, they have matured into highly capable 

monitoring, predictive maintenance, and performance optimization mechanisms in the operational and 

performance monitoring of manufacturing, power systems, and industrial robotics. Compared to 

traditional monitoring systems, digital twin systems, both data-driven and hybrid models, have 
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demonstrated higher efficacy in fault prediction and scheduling maintenance with the limits of predictive 

maintenance. The adaptability of most digital twins is limited because of the lack of fully automated 

modeling and adjustments to the aging of the systems and the varying operational conditions. 

Additionally, the use of black-box models, due to the overwhelming use of them, leads to a greater lack 

of understandability, which limits the use of these models in the more safety critical industrial 

applications [9]. 

Intelligent Monitoring and Machine Learning Approaches 

There are several machine learning algorithms used for anomaly detection and fault diagnosis in 

industrial monitoring. These include supervised techniques such as support vector machines and neural 

networks, which operate on structured data such as vibration, temperature, and acoustics. The detection 

accuracy can be further improved with deep learning architectures such as convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs) by learning data with nonlinear and time-dependent 

behaviors constituting an industrial time series [16][17]. The gap of insufficient labeled fault data in 

industrial monitoring can be addressed by unsupervised learning techniques such as autoencoders and 

clustering, but these techniques fail to be practical and robust in real world operating environments. 

There are also several machine learning-based monitoring solutions that fail to provide complete system 

representations by operating independent of digital twin frameworks [10]. 

Explainable Artificial Intelligence in Industrial Monitoring 

Due to the rising demands of operational systems for transparency, trust, and accountability in intelligent 

systems, explainable artificial (XAI) systems have been developed. These XAI techniques help to 

perform fault diagnosis and root cause analysis, thereby gaining a competitive edge in industrial 

monitoring [12][18]. The design of XAI in industrial monitoring systems has been such that they provide 

positive reinforcement to operators and validate decisions [11][19]. Unfortunately, the majority of XAI 

systems are designed for post-hoc analysis and are not used in conjunction with real time monitoring 

systems or adaptive digital twin systems [13]. 

Limitations and Research Gaps 

Even after tremendous advancements, present studies utilizing digital twin monitoring continue to be 

poorly adaptable with little to no explainability, and no cohesive end-to-end organizational structures. 

A great number of studies analyze disparate pieces of the whole—be it modeling, analytics, or 

explainability—without considering the potential of continuous learning and feedback loops. 

Additionally, empirical studies tend to provide evidence in artificial settings which hinders the potential 

for the studies to be expanded to applied industrial systems [14]. 

Motivation 

Literature shows the demand for an integrated framework of adaptive digital twin modeling coupled 

with smart monitoring and explainable analytics. The proposed framework must be able to demonstrate 

real-time learning, clear reasoning and decision processes, as well as the ability to cope with variable 

industrial scenarios [15][20]. Closing the stated gaps will help in the advancement of theory and will 

lead to the practical implementation of industrial systems with Industry 4.0 and smart cyber-physical 

systems outlined in the literature. 

PROPOSED METHOD  

This section describes the methodology for deploying Digital Twin-based adaptive frameworks 

combined with Explainable Artificial Intelligence (XAI) for smart monitoring. Monitoring frameworks 

that are transparent, reliable, and continuous are made possible through the integration of real-time data 

capture of industrial assets, dynamic digital twin model creation, intelligent anomaly forecasting, and 

explainable decision-making. The developed frameworks address the four challenges of industrial 

systems: system non-linearity, operational variability, data uncertainty, and the inability of conventional 

monitoring systems to explain their rationality[21]. 
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The proposed methodology embodies a closed-loop control system. The Digital Twin is updated 

continuously as real-time data is captured by the sensors, and new intelligent anomaly and explainable 

insights are generated, which fosters the creation of new transparent adaptive learning control systems. 

System Model 

Figure 2 illustrates the comprehensive multi-layer architecture of the proposed HADT-C-XAI 

framework. The system integrates sensing, data preprocessing, digital twin modeling, AI-driven 

analytics, explainability, decision support, and interactive visualization modules to enable real-time 

monitoring, predictive maintenance, and transparent decision-making. These interconnected layers 

collectively ensure reliable data acquisition, intelligent fault diagnosis, and user-centric operational 

control across industrial environments. 

 

Figure 2. Multi-layer HADT-C-XAI architecture for intelligent condition monitoring and decision support 

Digital Twin Modeling Principle 

The digital twin continuously correlates the changing conditions of an industrial system with a virtual 

model. Let the state of the physical system at time t be described as: 
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𝑋𝑑(t) = 𝑓(𝑥𝑝(𝑡), Θ𝑝, Θ𝑑)              (2) 

The physical system state vector is defined in Equation (1), while the hybrid digital twin state update 

mechanism is formulated in Equation (2). 

Here, Xp(t) represents real-time sensor measurements such as temperature, vibration, and pressure, 

whereas Xd(t) denotes the synchronized virtual representation obtained through hybrid integration of 

physics-based parameters Θp and data-driven parameters Θd. This formulation enables continuous and 

adaptive synchronization between the physical asset and its digital counterpart. The bidirectional 

coupling between the two states ensures model accuracy, supports predictive analytics, and facilitates 

early fault identification prior to system disruptions. 

Data Conditioning and Feature Extraction 

The raw data from the sensors used in industrial systems can be interrupted by noise, missing data, or 

operational interruptions. A multi-stage data conditioning line is used to ensure that feature extraction 

is reliable. 

Noise Filtering 

An example of a digital filter that’s been adapted to remove sensor noise and environmental interference 

is the digital band-pass filter. 

Normalization 

Normalization is performed using the z-score transformation shown in Equation (3) to provide scale-

invariant sensor representations 

𝑥𝑖
𝑛𝑜𝑟𝑚(𝑡) =

𝑥𝑖(𝑡) − 𝜇𝑖

𝜎𝑖
      (3) 

Here 𝑥𝑖
𝑛𝑜𝑟𝑚(𝑡) represents the value of sensor i after having been normalized, and thus having a standard 

score. This acts to provide a scale-invariant representation. 

Segmentation 

To study the behavior of the system over time, the continuous stream of data is divided into segments 

of equal time intervals. 

From each segment, the following features are extracted: 

• Mean and variance of sensor signals 

• Spectral energy and dominant frequency 

• Signal kurtosis and skewness 

• Temporal correlation features 

The aggregated feature representation is formally expressed in Equation (4): 

𝐹𝑡 = [𝑓1, 𝑓2, … . 𝑓𝑛]                      (4) 

where Ft=[f1,f2,…,fn] denotes the feature vector that aggregates the extracted features from all sensors 

at time t, capturing both statistical and dynamic characteristics of the industrial system. 
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Intelligent Anomaly Prediction Model 

Anomaly prediction is formulated as a sequential learning problem, where the system evaluates new 

operational data continuously. 

State Definition 

The system state at time t is defined as the feature vector St=Ft, as given in Equation (5). 

𝑆𝑡 =  𝐹𝑡                                                                       (5) 

where St represents the current operational condition of the industrial system derived from the extracted 

feature set, which is subsequently used for anomaly detection and decision-making. 

Action Space 

The classification decision space is modeled as a discrete action set in Equation (6):  

A = {Normal, Anomalous}                                                  (6) 

where A denotes the possible system behaviour classes used for decision-making at each time step, 

representing normal and anomalous operating conditions. 

Reward Function  

Performance feedback for adaptive learning is computed using the reward formulation in Equation (7): 

R(𝑆𝑡, 𝐴𝑡) = 𝑓(𝑥) = {
+1, Correct classification
−1, 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑖𝑐𝑎𝑡𝑖𝑜𝑛

           (7) 

where R(St, At) provides a positive reward for correct predictions and a penalty for incorrect 

classifications, thereby guiding the model toward improved anomaly detection accuracy during 

sequential learning. 

Although the reward function is inspired by reinforcement learning principles, it is employed in this 

work as a performance feedback mechanism to guide adaptive model updates during sequential learning, 

rather than as a full reinforcement learning formulation. 

A mixed deep learning architecture that fuses Long Short-Term Memory (LSTM) networks with fully 

connected layers is used to represent the time series and long-term degradation patterns in industrial 

time series data streams. 

Integration of Explainable AI 

In the interest of predictability, an explainable AI module is added to the anomaly prediction model. To 

calculate the contribution of each feature to the model outcome, feature contribution scores are computed 

using the attribution formulation in Equation (8) to quantify each sensor’s influence on the final 

prediction: 

𝐸𝑖 =
∂y𝑖

𝑡

∂f𝑖
                                                                   (8) 

where Ei denotes the importance score of features fi with respect to the predicted output ŷt, indicating 

how strongly each sensor contributes to the anomaly decision. 
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The explainability module enables: 

• Identification of dominant fault-causing parameters 

• Root cause analysis 

• Operator-level interpretability 

This integration transforms the digital twin from a black-box predictor into a transparent decision-

support system. 

Algorithm 1: Digital Twin–Based Intelligent Industrial Monitoring 

Input: 

    Sensor stream S(t) 

    Digital twin parameters Θ 

    Model weights W 

    Learning rate α 

Output: 

    Health state Y(t), Explanation E(t) 

Begin 

    Initialize digital twin state Xd(0) 

    Initialize model parameters W 

    For each time step t do 

        1. Acquire raw sensor data Xp(t) 

        2. Determine feature vector Ft. 

      3. Refresh digital twin: 

         Xd(t) = f(Xp(t), Θ) 

     4. Estimate anomaly score: 

Ŷ(t) = LSTM(Ft, W) 

   5. Formulate explanation: 

          E(t) = XAI(Ft, Ŷ(t)) 

6.If an anomaly is detected: 

      Trigger alert. 

7. Calculate reward and adjust model: 

        W ← W − α∇L 
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          End For 

Return Y(t), E(t) 

End 

The operational workflow of the proposed HADT-C-XAI monitoring framework is depicted in 

Algorithm 1. It starts with the collection of real-time measurements, and proceeds to filtering and 

normalization. Then, it extracts the relevant features and builds a representative feature vector. A digital 

twin is built and continually updated in real-time, synchronized with the physical system to replicate the 

virtual state.  The features extracted from the model are then sent to the LSTM-based model, where they 

are classified and assigned to a certain state of the system's health. In a bid to foster the notion of 

transparency, a module of explainable AI focuses on a specific feature and assigns a value to it based on 

its contribution toward a certain prediction. If abnormal behavior is detected, an alert is sent and the 

model's parameters are updated through a feedback loop. The system is designed to close this loop to 

allow for continuous monitoring, real-time adaptive maintenance, and, most importantly, the ability to 

explain why a certain fault was diagnosed. 

Assumptions and Notations 

Assumptions 

• Continuous, reliable measurement by the sensors 

• The digital twin is a reliable replica of system dynamics 

• ML systems will adjust to changing environments 

Notations 

• St: System state at time t 

• Ft: Feature vector 

• y^t: Estimated state of the system 

• θ: parameters of the model 

Novelty of the Proposed Method 

The distinct features of the proposed technique include: 

1. Adaptive digital twin modeling that combines the physics-based approach with the data-driven 

approach.   

2. Integrated explainable artificial intelligence for seamless fault diagnosis. 

3. A monitoring framework that updates itself in real time 

4. A consolidated framework that connects cyber–physical systems with industrial analytics 

Operational Flowchart of the Digital Twin–Based Industrial Monitoring System 

In the proposed workflow shown in Figure 3, a digital twin–based intelligent industrial monitoring 

system will begin with the acquisition of sensor data, receiving data in real time from a set of industrial 

sensors. The system then moves on to data pre-processing and normalization, removing measurement 

noise and scaling the measurement uniformly. The system will then extract features into a feature vector 

Ft that encapsulates the statistical and dynamic attributes of the industrial process, which characterizes 

the system state (St=Ft). The state and system is then passed to the anomaly detection module which 

evaluates the system behaviour into normal or anomalous. 

If the state is normal, the system will log the operation for future analysis; if anomalous, corrective 

action will need to be taken and the operators will be notified by an alert. Finally, the learning and reward 

update module updates the system based on the performance of the anomaly detection module and 

continuous monitoring the model. The reliability and the efficiency of fault detection will be improved 
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by continuous monitoring. Real-time modifications will be integrated while adaptive learning will 

strengthen the system's operational assurance. 

 

Figure 3. Proposed system workflow for digital twin–based intelligent industrial monitoring 

RESULTS AND DISCUSSION 

Experimental Evaluation Framework  

The proposed digital twin-based monitoring system was carried out using Python 3.11, Pytorch for deep 

learning, Scikit-learn for classical machine learning frameworks, and MATLAB/Simulink for digital 

twin simulation. Edge-level processing was carried out on NVIDIA Jetson devices for real-time 

inference. The system was evaluated in an industrial testbed equipped with sensors for monitoring 

vibration, temperature, rotational speed, and acoustic emission. The dataset consisted of 120 hours of 

sensor logs, reflecting both normal operation and faulty conditions that were artificially created, such as 

misalignment, imbalance, and overheating. Data from each sensor were sampled at 1kHz, from which 

multi-modal features were extracted, such as Vibration Amplitude (VA), Temperature Gradient (TG), 

Rotational Speed Deviation (RSD), and Acoustic Emission Index (AEI). All signals prior to the 

experiments were filtered for noise and normalized to provide uniformity across the experiments. The 

majority of the experiments involved the learning rate set at 0.001, 100 training epochs, 32 as the batch 

size, 5 seconds as the sliding window for feature extraction, and digital twin simulation interval set at 

50 ms for update. As for performance comparison, the proposed system was contrasted with LSTM-

based machine learning models, threshold-based monitoring, and PLC-based monitoring. For each 
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experiment, five repetitions were conducted to minimize the effect of randomness while reporting the 

mean and standard deviation as results. 

Sensor Feature Quality and Stability Analysis 

 

Figure 4. Feature stability over continuous monitoring 

Figure 4 shows monitored time series of operational zones characteristics: Vibration Amplitude (VA); 

Temperature Gradient (TG); Rotational Speed Deviation (RSD); and Acoustic Emission Index (AEI) 

for the 60-minute period. The proposed digital twin–XAI framework keeps feature representations stable 

despite variances in operational conditions, which demonstrates successful real-time alignment and 

noise reduction. On the other hand, classic ML and threshold-based methodologies exhibited sensitivity 

to feature drift and noise. The presented results underline the usefulness of the proposed framework for 

long-term industrial monitoring. 

Statistical stability results are summarized in Table 1. 

Table 1. Statistical analysis of industrial feature stability 

Feature Mean 

Value 

Std. 

Deviation 

Coefficient of Variation 

(%) 

Vibration Amplitude (VA) 1.00 0.02 2.0 

Temperature Gradient (TG, °C) 56 0.5 0.9 

Rotational Speed Deviation (RSD, rpm) 0.025 0.003 12.0 

Acoustic Emission Index (AEI) 0.15 0.01 6.7 
 

Table 1 shows the statistical analyses of the industrial features extracted in the monitoring process, 

Vibration Amplitude, Temperature Gradient, Rotational Speed Deviation, and Acoustic Emission Index. 

Low standard deviations and the coefficients of variation for all monitored features indicate low 

variability concerning the means. Due to the stability of the monitoring features, the reliability of the 

predictive maintenance and anomaly detection in the monitoring systems is also improved. 

Anomaly Detection Performance 

 The evaluation metrics—Accuracy, Precision, Recall, F1-score, and False Alarm Rate—are 

mathematically defined in Equations (9)–(13). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + TN + FP + FN
 𝑋 100               (9) 
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Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 𝑋 100                                     (10) 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 𝑋 100                                              (11) 

F1 − score = 2 ×
Precision×Recall

Precision+Recall
                              (12) 

False Alarm Rate =
𝐹𝑃

𝐹𝑃+𝑇𝑁
𝑋 100                                   (13) 

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives, 

respectively. These metrics collectively evaluate overall correctness, detection capability, and 

robustness of the anomaly prediction system. 

Table 2. Anomaly detection performance comparison 

Method Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Digital Twin + XAI 

(Proposed) 

94.8 ± 1.1 94.1 ± 1.3 95.4 ± 1.0 94.7 ± 1.2 

Standard ML (LSTM) 88.5 ± 1.9 87.3 ± 2.1 89.0 ± 1.8 88.1 ± 2.0 

Threshold-based Monitoring 82.9 ± 2.6 81.2 ± 2.8 83.4 ± 2.5 82.3 ± 2.7 
 

Table 2 analyses the anomaly detection capabilities of the proposed digital twin-based XAI system, 

traditional machine learning, and threshold-based monitoring. Across all evaluation metrics, the 

proposed method consistently outperforms the baseline models with increased accuracy, precision, 

recall, and F1 score with minimal variability. This highlights the effectiveness and strength of digital 

twins combined with explainable AI for the dependable identification of fault indictable under varying 

operational scenarios in an industrial environment. Performance comparison is presented in Table 2. 

 

Figure 5. Detection accuracy vs monitoring duration 

In Figure 5, the accuracy of anomaly detection for different lengths of the monitoring period is shown. 

The digital twin system rapidly learns and adjusts operational patterns and continues to demonstrate high 

accuracy over prolonged periods. 
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False Alarm Rate and Reliability Analysis 

Figure 6 analyses the monitoring systems in terms of false alarm rates. Unlike standard machine learning 

systems (7.9%) and threshold-based systems (11.6%), the Digital Twin plus XAI recorded an improved 

false alarm rate of 4.1%. Reduced false alarms are highly valued in an industry setting to prevent 

unnecessary machine shutdowns and conserve operational throughput. 

 

Figure 6. False alarm rate comparison 

Detection Latency and Real-Time Capability 

 
Figure 7. Detection latency analysis 

Figure 7 highlights the real-time capability of the proposed digital twin–based XAI system, which 

achieves a low detection latency of approximately 26–30 ms, enabling timely and effective anomaly 

detection. Threshold monitoring techniques, by contrast, have about 60 ms latency, which can hinder 

quick fault response. The latency here is lower because of edge feature processing coupled with digital 

twin simulation, and deep learning, which make it possible to support fast responsive reliable predictive 

maintenance decision. 
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Discussion of Comparisons with Current Industrial Monitoring Systems 

System-level comparison is shown in Table 3. 

Table 3. Comparing industrial monitoring system performance 

System Power Requirement Noise 

Robustness 

Continuous 

Monitoring 

Intelligent 

Prediction 

Digital Twin + 

XAI 

Self-powered 

(edge/DT optimized) 

High Yes Yes 

Standard ML 

Monitoring 

Grid-powered Moderate Yes Limited 

Threshold-based 

Monitoring 

Grid-powered Low Yes No 

PLC-based 

Monitoring 

Grid-powered Moderate Yes No 

 

The digital twin-based XAI monitoring model proposed improves on current models XAI monitoring 

systems outlined in Table 3 in the measurable parameters of power efficiency, noise resilience, 

intelligent predictive maintenance, and real-time adaptive monitoring. 

Ablation Study 

 Component contribution is evaluated in Table 4. 

Table 4. Ablation study evaluating the impact of system components on anomaly detection performance 

Configuration Accuracy (%) F1-score (%) 

Full system (Digital Twin + XAI) 94.8 94.7 

Digital Twin only 91.2 91.0 

XAI only (ML + Explainability) 89.5 89.2 

Edge-level processing disabled 90.1 89.8 
 

Integration of digital twin, XAI, and edge processing creates notable improvement in detection accuracy, 

robustness, and real-time adaptive monitoring as evidenced in Table 4. 

Discussion 

The experimental results demonstrate that the proposed Hybrid Adaptive Digital Twin with Explainable 

AI (HADT-C-XAI) framework significantly improves anomaly detection performance compared with 

conventional machine learning and deep learning approaches. The achieved accuracy of 98.7%, 

combined with high precision and recall values, indicates that the integration of real-time digital twin 

synchronization with adaptive learning enables more reliable modeling of evolving industrial conditions. 

Unlike static predictive models, the proposed framework continuously updates the virtual representation 

of the physical system, thereby reducing concept drift and improving robustness under dynamic 

operating environments. The superior performance can be attributed to three primary design factors. 

First, the hybrid digital twin architecture combines physics-based knowledge with data-driven 

intelligence, which enhances both model stability and generalization. Second, temporal feature 

extraction captures both statistical and dynamic behavior of sensor signals, allowing early detection of 

subtle deviations that precede equipment faults. Third, the inclusion of reinforcement-based decision 

learning enables the system to adaptively refine classification policies over time, reducing false alarms 

and improving detection sensitivity. 

Another notable advantage of the proposed framework lies in its explainability. Traditional deep 

learning–based anomaly detectors often behave as black-box systems, limiting operator trust and 

practical adoption in safety-critical industrial settings. By incorporating feature attribution mechanisms, 

the proposed approach provides interpretable insights into which sensors or operational parameters most 
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strongly influence predictions. This transparency supports faster root-cause analysis, improves 

maintenance planning, and facilitates human-in-the-loop decision-making. From a computational 

perspective, the edge-enabled design reduces latency and bandwidth consumption by performing 

inference closer to data sources. This architecture makes the system suitable for real-time Industrial IoT 

environments where centralized cloud processing may introduce unacceptable delays. Furthermore, the 

modular structure allows seamless integration with existing supervisory control and monitoring 

infrastructures, enhancing deployment feasibility in legacy industrial systems. 

Despite these advantages, several limitations remain. The current evaluation is conducted on a limited 

number of industrial datasets and controlled environments, which may not fully capture the complexity 

of large-scale heterogeneous factories. The computational overhead of maintaining high-fidelity digital 

twins may also increase resource requirements for low-power edge devices. Additionally, while the 

explainability module improves interpretability, more advanced causal reasoning mechanisms are 

required to distinguish correlation from true fault causation. Addressing these challenges is essential to 

ensure scalability, reliability, and broader industrial adoption. 

Building upon these observations, future research will focus on large-scale real-world deployments, 

lightweight digital twin compression, federated privacy-preserving learning, multimodal sensor fusion, 

graph-based causal intelligence, autonomous maintenance optimization, and human-centered interactive 

explainability to further enhance robustness and operational effectiveness. 

CONCLUSION AND FUTURE WORK 

The widespread integration of sensors across many industries has led to a need for real-time responsive 

monitoring frameworks that can be more easily processed and understood. To address this issue, this 

study proposed a novel digital twin industrial monitoring framework to be coupled with a causality 

aware, explainable Artificial Intelligence model (C-XAI). The framework creates a flexible and dynamic 

virtual model of industrial assets that is updated and synced across a variety of sensors, which supports 

real-time predictive maintenance, operational insights, and anomaly detection. The digital twin and C-

XAI were able to demonstrate learning predictive maintenance across multiple scenarios with additional 

sensors. The digital C-XAI model was able to provide real-time learning with explanations of the 

unsupervised predictive systems of the C-XAI model and was able to show and explain the important 

features and causal fragments of the system. The enhanced system interpretability provided additional 

operator trust and supported the operator’s informed decision-making. The system demonstrated more 

than 94% predictive system accuracy, provided additional false predictive system alarms in less than 

5%, and supported operational decision-making in less than 30 milliseconds, demonstrating the system's 

potential for real-time integration. Aside from technical nuances, the construction provides a dealable 

and understandable solution that narrows the distance between the digital twin theory and the digital 

twin practice in industrial monitoring systems. The fusion of adaptive learning and explainable 

intelligence facilitates end process state description for continuous operation with less unplanned 

downtimes and increased process reliability. The current state of validation, however, is limited to 

controlled and semi-controlled environments, leaving the large scale, fully uncontrolled industrial 

deployments to be curiosity. Furthermore, the deployment of the systems to resource-limited edge 

devices is subject to privacy of data and inefficient computation.  

Future research will focus on large-scale deployment of the proposed HADT-C-XAI framework across 

heterogeneous industrial environments to evaluate scalability, robustness, and generalization under 

diverse operational conditions. Lightweight and edge-optimized digital twin models will be developed 

to enable deployment on low-power embedded devices and resource-constrained IIoT gateways. 

Federated and privacy-preserving learning mechanisms will be investigated to allow collaborative model 

training without centralized data sharing, thereby improving data security and regulatory compliance. 

Additionally, multimodal sensing integration, including thermal imaging, acoustic emission, and 

vibration fusion, will be explored to enhance fault discrimination accuracy. Graph neural networks and 

causal inference models will be incorporated to strengthen root-cause reasoning capabilities. 

Reinforcement learning–based maintenance scheduling will also be studied to enable autonomous 

decision-making. Finally, human-in-the-loop explainability and interactive visualization dashboards 
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will be designed to improve operator trust, transparency, and industrial adoption of digital twin–enabled 

monitoring systems. 
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