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SUMMARY

Industrial systems increasingly rely on Industrial Internet of Things (IIoT) sensors for real-time
monitoring and predictive maintenance. However, most existing digital twin—based monitoring solutions
depend on static or black-box machine learning models, limiting interpretability, operator trust, and safe
deployment in safety-critical environments. In response to these challenges, the author develops the
Adaptive Hybrid Digital Twin with Causality-Aware Explainable Artificial Intelligence (HADT-C-XAI)
framework to offer transparency and intelligence in industrial monitoring. The framework describes three
integrated layers: (i) acquisition of real-time sensors, (ii) continually synchronized hybrid digital twin
modeling, which is the integration of physics and data hybrid modeling and (iii) an intelligent analysis
layer where LSTM-based anomaly detection is ungraded with explainable feature attribution. A closed-
loop learning mechanism updates the model dynamically to adapt to operational drift while generating
interpretable fault causes for operator decision support. Experiments were conducted on a multi-sensor
industrial testbed containing 120 hours of vibration, temperature, acoustic, and rotational data. The
implemented system shows a 94.8% detection accuracy, 95.4% recall, and a 4.1% low false alarm rate,
which surpasses standard LSTM (88.5%) and threshold-based monitoring (82.9%). With edge-level
inference, detection latency has been reduced to 26-30 ms, which allows for real-time deployment.
Results demonstrate that integrating adaptive digital twins with explainable Al improves reliability,
transparency, and fault diagnosis while maintaining computational efficiency. The proposed framework
provides a scalable and trustworthy solution for predictive maintenance, Industry 4.0 applications, and
cyber—physical system monitoring.

Key words: digital twins, explainable artificial intelligence, adaptive modeling, intelligent industrial
monitoring, causality analysis, predictive maintenance, cyber—physical systems, industry 4.0.1.
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INTRODUCTION

Developments in industrial automation and cyber-physical systems have increased the intricacy of
modern industry operations. While maintaining reliability, safety, and efficiency, industrial assets must
adapt to new uncertainties and variable operating conditions. Operational continuity, resource
optimization, and early fault detection necessitate real-time monitoring. However, static models,
periodic checks, and traditional monitoring practices frequently overlook system dynamics and complex
environments in industrial settings [1][2].

With the advent of the Industrial Internet of Things (IIoT) Continuous monitoring of Industrial assets
makes it possible to gather, retain, and analyze heterogeneous sensor data without interruption. This data
allows for the development of intelligent monitoring systems and the creation of predictive maintenance
so long as the system operates without discontinuity, and so long as the data is raw, unprocessed, and
reliable. During the evolution towards the smart manufacturing phase of Industry 4.0, more adaptive,
and dependable monitoring systems are becoming demanded [3].

Digital twin technologies help provide potential solutions by creating and maintaining real-time digital
representations of physical industrial systems. Digital twins assist in the performance of predictive
maintenance by monitoring system conditions and continuously updating system models based on real-
time synchronized sensor data [3]. Even with these benefits, many current applications of digital twins
use black-box models for machine learning which limit understanding and the ability to adopt these
technologies for use in industrial applications with strict safety and regulatory concerns [4].

Explainable Artificial Intelligence (XAI) provides the ability to overcome these challenges by creating
and providing human understandable justification for a model’s decision, which in turn aids in the
understanding of errors, the identifcation of causes of a problem, and the fostering of trust by the operator
[5]. Yet, the use of explainable intelligence combined with adaptive digital twin-based industrial
monitoring in real-time situations continues to be very limited.
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Figure 1. Digital twin—based intelligent industrial monitoring architecture with explainable Al integration

In Figure 1, a digital twin approach is applied to intelligent industrial monitoring. The framework
involves real-time sensor data streamed from physical assets and synchronized to a digital twin.
Analytics are intelligent for the purpose of anomaly detection and condition monitoring. The explainable
Al layer sheds light to fault causation and system health to aid decision-making. [6]
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Problem Identification

The significant advancement of digital twin and machine learning technologies is evident in the field of
industrial monitoring. However, the majority of the available solutions continue to use a black box
approach and rely represent systems in a static manner. The black box approach in conjunction with a
static system representation, use of Al and digital twins leaves a significant gap within the field of
industry monitoring, especially in the areas of early fault detection, root cause detection, and proactive
maintenance. This is highly apparent in complex and safety critical industrial systems. [7]

Objective of the research

The main aim of this research is to create a framework that is digital twin based and adaptive in the
explainable form for the purpose of monitoring industrial systems in real-time. This involves the
following specific aims:

* Develop an architecture for real-time digital twin models that are synchronized to physical
industrial assets and can operate in real time.

* Develop and implement flexible machine learning models for predictive monitoring and anomaly
detection within the framework.

» Integrate system behavior and fault causation into the framework to obtain explainable Al.

»  Construct the framework and conduct simulations and comparative studies to assess it.

Contributions
The primary contributions of this work are:

» A digital twin—based intelligent monitoring framework that incorporates adaptive learning and
explainable Al for the first time.

* An enhancement of the fault diagnosis, root cause analysis, and operator trust aspects, driven by
explainability, which directly impacts the trust of the operator.

* An adaptable and versatile solution applicable to Industry 4.0 and cyber-physical systems.
Paper Organization

The remainder of this paper is structured as follows. A review of prior work on digital twin technologies
and intelligent industrial monitoring is presented in Section 2. In Section 3, we present the proposed
system architecture and explainable monitoring methodology. Section 4 is devoted to result presentation
and comparative analysis. In Section 5, we summarize the paper and identify avenues for future work..

LITERATURE REVIEW

Advancements in automation and interconnectivity in industry have increased the need for sophisticated
monitoring and diagnostics systems that operate seamlessly in shifting and uncertain environments. For
industrial digital systems to be safe, efficient, and reliable, they must be continuously monitored. This
has led to the development of digital twins, smart condition monitoring, machine learning for fault
identification, and explainable artificial intelligence (XAI) [8].

Digital Twins in Industrial Systems

Digital twins enable virtual reproductions of real-time sensor monitored systems. As digital twins did
have a long-derived history as physics-based simulation systems, they have matured into highly capable
monitoring, predictive maintenance, and performance optimization mechanisms in the operational and
performance monitoring of manufacturing, power systems, and industrial robotics. Compared to
traditional monitoring systems, digital twin systems, both data-driven and hybrid models, have
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demonstrated higher efficacy in fault prediction and scheduling maintenance with the limits of predictive
maintenance. The adaptability of most digital twins is limited because of the lack of fully automated
modeling and adjustments to the aging of the systems and the varying operational conditions.
Additionally, the use of black-box models, due to the overwhelming use of them, leads to a greater lack
of understandability, which limits the use of these models in the more safety critical industrial
applications [9].

Intelligent Monitoring and Machine Learning Approaches

There are several machine learning algorithms used for anomaly detection and fault diagnosis in
industrial monitoring. These include supervised techniques such as support vector machines and neural
networks, which operate on structured data such as vibration, temperature, and acoustics. The detection
accuracy can be further improved with deep learning architectures such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) by learning data with nonlinear and time-dependent
behaviors constituting an industrial time series [16][17]. The gap of insufficient labeled fault data in
industrial monitoring can be addressed by unsupervised learning techniques such as autoencoders and
clustering, but these techniques fail to be practical and robust in real world operating environments.
There are also several machine learning-based monitoring solutions that fail to provide complete system
representations by operating independent of digital twin frameworks [10].

Explainable Artificial Intelligence in Industrial Monitoring

Due to the rising demands of operational systems for transparency, trust, and accountability in intelligent
systems, explainable artificial (XAI) systems have been developed. These XAI techniques help to
perform fault diagnosis and root cause analysis, thereby gaining a competitive edge in industrial
monitoring [ 12][18]. The design of XAl in industrial monitoring systems has been such that they provide
positive reinforcement to operators and validate decisions [11][19]. Unfortunately, the majority of XAl
systems are designed for post-hoc analysis and are not used in conjunction with real time monitoring
systems or adaptive digital twin systems [13].

Limitations and Research Gaps

Even after tremendous advancements, present studies utilizing digital twin monitoring continue to be
poorly adaptable with little to no explainability, and no cohesive end-to-end organizational structures.
A great number of studies analyze disparate pieces of the whole—be it modeling, analytics, or
explainability—without considering the potential of continuous learning and feedback loops.
Additionally, empirical studies tend to provide evidence in artificial settings which hinders the potential
for the studies to be expanded to applied industrial systems [14].

Motivation

Literature shows the demand for an integrated framework of adaptive digital twin modeling coupled
with smart monitoring and explainable analytics. The proposed framework must be able to demonstrate
real-time learning, clear reasoning and decision processes, as well as the ability to cope with variable
industrial scenarios [15][20]. Closing the stated gaps will help in the advancement of theory and will
lead to the practical implementation of industrial systems with Industry 4.0 and smart cyber-physical
systems outlined in the literature.

PROPOSED METHOD

This section describes the methodology for deploying Digital Twin-based adaptive frameworks
combined with Explainable Artificial Intelligence (XAI) for smart monitoring. Monitoring frameworks
that are transparent, reliable, and continuous are made possible through the integration of real-time data
capture of industrial assets, dynamic digital twin model creation, intelligent anomaly forecasting, and
explainable decision-making. The developed frameworks address the four challenges of industrial
systems: system non-linearity, operational variability, data uncertainty, and the inability of conventional
monitoring systems to explain their rationality[21].

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N ” 34 1259



Dr. Kousalya, R. et al: Digital twin—based .... Archives for Technical Sciences 2025, 34(3), 1256-1272

The proposed methodology embodies a closed-loop control system. The Digital Twin is updated
continuously as real-time data is captured by the sensors, and new intelligent anomaly and explainable
insights are generated, which fosters the creation of new transparent adaptive learning control systems.

System Model

Figure 2 illustrates the comprehensive multi-layer architecture of the proposed HADT-C-XAI
framework. The system integrates sensing, data preprocessing, digital twin modeling, Al-driven
analytics, explainability, decision support, and interactive visualization modules to enable real-time
monitoring, predictive maintenance, and transparent decision-making. These interconnected layers
collectively ensure reliable data acquisition, intelligent fault diagnosis, and user-centric operational
control across industrial environments.
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Figure 2. Multi-layer HADT-C-XALI architecture for intelligent condition monitoring and decision support

Digital Twin Modeling Principle

The digital twin continuously correlates the changing conditions of an industrial system with a virtual
model. Let the state of the physical system at time t be described as:

Xp(®) = [x1(0), x2(8), . X0 (6) (1)

The state of the digital twin model can be described as:
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Xd (t) = f(xp(t)J G)pl G)d) (2)

The physical system state vector is defined in Equation (1), while the hybrid digital twin state update
mechanism is formulated in Equation (2).

Here, X,(t) represents real-time sensor measurements such as temperature, vibration, and pressure,
whereas Xq4(t) denotes the synchronized virtual representation obtained through hybrid integration of
physics-based parameters ®, and data-driven parameters ®@q. This formulation enables continuous and
adaptive synchronization between the physical asset and its digital counterpart. The bidirectional
coupling between the two states ensures model accuracy, supports predictive analytics, and facilitates
early fault identification prior to system disruptions.

Data Conditioning and Feature Extraction

The raw data from the sensors used in industrial systems can be interrupted by noise, missing data, or
operational interruptions. A multi-stage data conditioning line is used to ensure that feature extraction
is reliable.

Noise Filtering

An example of a digital filter that’s been adapted to remove sensor noise and environmental interference
is the digital band-pass filter.

Normalization

Normalization is performed using the z-score transformation shown in Equation (3) to provide scale-
invariant sensor representations

1o () = x;(t) '— Hi 3)

L

Here x[*°"™(t) represents the value of sensor i after having been normalized, and thus having a standard
score. This acts to provide a scale-invariant representation.

Segmentation

To study the behavior of the system over time, the continuous stream of data is divided into segments
of equal time intervals.

From each segment, the following features are extracted:
*  Mean and variance of sensor signals
»  Spectral energy and dominant frequency
» Signal kurtosis and skewness
»  Temporal correlation features
The aggregated feature representation is formally expressed in Equation (4):

F = [f1;f2»----fn] 4)

where Ft=[f,f,,...,f,] denotes the feature vector that aggregates the extracted features from all sensors
at time t, capturing both statistical and dynamic characteristics of the industrial system.
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Intelligent Anomaly Prediction Model

Anomaly prediction is formulated as a sequential learning problem, where the system evaluates new
operational data continuously.

State Definition
The system state at time t is defined as the feature vector S=F, as given in Equation (5).
Se = F (5)

where S represents the current operational condition of the industrial system derived from the extracted
feature set, which is subsequently used for anomaly detection and decision-making.

Action Space
The classification decision space is modeled as a discrete action set in Equation (6):
A = {Normal, Anomalous} (6)

where A denotes the possible system behaviour classes used for decision-making at each time step,
representing normal and anomalous operating conditions.

Reward Function
Performance feedback for adaptive learning is computed using the reward formulation in Equation (7):

Correct classification
misclassiication

RGSwA) = f() = {7 ™

where R(S:, A:) provides a positive reward for correct predictions and a penalty for incorrect
classifications, thereby guiding the model toward improved anomaly detection accuracy during
sequential learning.

Although the reward function is inspired by reinforcement learning principles, it is employed in this
work as a performance feedback mechanism to guide adaptive model updates during sequential learning,
rather than as a full reinforcement learning formulation.

A mixed deep learning architecture that fuses Long Short-Term Memory (LSTM) networks with fully
connected layers is used to represent the time series and long-term degradation patterns in industrial
time series data streams.

Integration of Explainable Al

In the interest of predictability, an explainable Al module is added to the anomaly prediction model. To
calculate the contribution of each feature to the model outcome, feature contribution scores are computed
using the attribution formulation in Equation (8) to quantify each sensor’s influence on the final
prediction:

(8)

where E; denotes the importance score of features fi with respect to the predicted output y, indicating
how strongly each sensor contributes to the anomaly decision.

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N ” 34 1262



Dr. Kousalya, R. et al: Digital twin—based .... Archives for Technical Sciences 2025, 34(3), 1256-1272

The explainability module enables:

» Identification of dominant fault-causing parameters
* Root cause analysis
»  Operator-level interpretability

This integration transforms the digital twin from a black-box predictor into a transparent decision-

support system.
Algorithm 1: Digital Twin—Based Intelligent Industrial Monitoring
Input:
Sensor stream S(t)
Digital twin parameters ®
Model weights W
Learning rate a
Output:
Health state Y(t), Explanation E(t)
Begin
Initialize digital twin state X4(0)
Initialize model parameters W
For each time step t do
1. Acquire raw sensor data X(t)
2. Determine feature vector Ft.
3. Refresh digital twin:
Xd(t) = f(Xp(t), ®)
4. Estimate anomaly score:
Y(t) = LSTM(Ft, W)
5. Formulate explanation:
E(t) = XAI(Ft, Y(t))
6.If an anomaly is detected:
Trigger alert.
7. Calculate reward and adjust model:

W «— W —aVL
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End For
Return Y(t), E(t)
End

The operational workflow of the proposed HADT-C-XAI monitoring framework is depicted in
Algorithm 1. It starts with the collection of real-time measurements, and proceeds to filtering and
normalization. Then, it extracts the relevant features and builds a representative feature vector. A digital
twin is built and continually updated in real-time, synchronized with the physical system to replicate the
virtual state. The features extracted from the model are then sent to the LSTM-based model, where they
are classified and assigned to a certain state of the system's health. In a bid to foster the notion of
transparency, a module of explainable Al focuses on a specific feature and assigns a value to it based on
its contribution toward a certain prediction. If abnormal behavior is detected, an alert is sent and the
model's parameters are updated through a feedback loop. The system is designed to close this loop to
allow for continuous monitoring, real-time adaptive maintenance, and, most importantly, the ability to
explain why a certain fault was diagnosed.

Assumptions and Notations
Assumptions

*  Continuous, reliable measurement by the sensors
»  The digital twin is a reliable replica of system dynamics
* ML systems will adjust to changing environments

Notations

* Si System state at time t

* Fi Feature vector

* y”~t: Estimated state of the system
*  0: parameters of the model

Novelty of the Proposed Method
The distinct features of the proposed technique include:

1. Adaptive digital twin modeling that combines the physics-based approach with the data-driven
approach.

2. Integrated explainable artificial intelligence for seamless fault diagnosis.

3. A monitoring framework that updates itself in real time

4. A consolidated framework that connects cyber—physical systems with industrial analytics

Operational Flowchart of the Digital Twin—Based Industrial Monitoring System

In the proposed workflow shown in Figure 3, a digital twin—based intelligent industrial monitoring
system will begin with the acquisition of sensor data, receiving data in real time from a set of industrial
sensors. The system then moves on to data pre-processing and normalization, removing measurement
noise and scaling the measurement uniformly. The system will then extract features into a feature vector
Ft that encapsulates the statistical and dynamic attributes of the industrial process, which characterizes
the system state (St=Ft). The state and system is then passed to the anomaly detection module which
evaluates the system behaviour into normal or anomalous.

If the state is normal, the system will log the operation for future analysis; if anomalous, corrective
action will need to be taken and the operators will be notified by an alert. Finally, the learning and reward
update module updates the system based on the performance of the anomaly detection module and
continuous monitoring the model. The reliability and the efficiency of fault detection will be improved
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by continuous monitoring. Real-time modifications will be integrated while adaptive learning will
strengthen the system's operational assurance.

/ Sensor Data Acquisition /

Data Preprocessing & Normalization 1

'

| Feature Extraction |

v

| State Definition (St=Ft) |

Anomaly
Detection?
/Normal Operation Logged/ / Anomaly Alert Generatior/

{

| Reward Update / Learning Module—|

yes

Figure 3. Proposed system workflow for digital twin—based intelligent industrial monitoring
RESULTS AND DISCUSSION
Experimental Evaluation Framework

The proposed digital twin-based monitoring system was carried out using Python 3.11, Pytorch for deep
learning, Scikit-learn for classical machine learning frameworks, and MATLAB/Simulink for digital
twin simulation. Edge-level processing was carried out on NVIDIA Jetson devices for real-time
inference. The system was evaluated in an industrial testbed equipped with sensors for monitoring
vibration, temperature, rotational speed, and acoustic emission. The dataset consisted of 120 hours of
sensor logs, reflecting both normal operation and faulty conditions that were artificially created, such as
misalignment, imbalance, and overheating. Data from each sensor were sampled at 1kHz, from which
multi-modal features were extracted, such as Vibration Amplitude (VA), Temperature Gradient (TG),
Rotational Speed Deviation (RSD), and Acoustic Emission Index (AEI). All signals prior to the
experiments were filtered for noise and normalized to provide uniformity across the experiments. The
majority of the experiments involved the learning rate set at 0.001, 100 training epochs, 32 as the batch
size, 5 seconds as the sliding window for feature extraction, and digital twin simulation interval set at
50 ms for update. As for performance comparison, the proposed system was contrasted with LSTM-
based machine learning models, threshold-based monitoring, and PLC-based monitoring. For each

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N ” 34 1265



Dr. Kousalya, R. et al: Digital twin—based .... Archives for Technical Sciences 2025, 34(3), 1256-1272

experiment, five repetitions were conducted to minimize the effect of randomness while reporting the
mean and standard deviation as results.

Sensor Feature Quality and Stability Analysis

Feature Stability over Continuous
Industrial Monitoring
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Figure 4. Feature stability over continuous monitoring

Figure 4 shows monitored time series of operational zones characteristics: Vibration Amplitude (VA);
Temperature Gradient (TG); Rotational Speed Deviation (RSD); and Acoustic Emission Index (AEI)
for the 60-minute period. The proposed digital twin—X Al framework keeps feature representations stable
despite variances in operational conditions, which demonstrates successful real-time alignment and
noise reduction. On the other hand, classic ML and threshold-based methodologies exhibited sensitivity
to feature drift and noise. The presented results underline the usefulness of the proposed framework for
long-term industrial monitoring.

Statistical stability results are summarized in Table 1.

Table 1. Statistical analysis of industrial feature stability

Feature Mean Std. Coefficient of Variation
Value Deviation (%)
Vibration Amplitude (VA) 1.00 0.02 2.0
Temperature Gradient (TG, °C) 56 0.5 0.9
Rotational Speed Deviation (RSD, rpm) | 0.025 0.003 12.0
Acoustic Emission Index (AEI) 0.15 0.01 6.7

Table 1 shows the statistical analyses of the industrial features extracted in the monitoring process,
Vibration Amplitude, Temperature Gradient, Rotational Speed Deviation, and Acoustic Emission Index.
Low standard deviations and the coefficients of variation for all monitored features indicate low
variability concerning the means. Due to the stability of the monitoring features, the reliability of the
predictive maintenance and anomaly detection in the monitoring systems is also improved.

Anomaly Detection Performance

The evaluation metrics—Accuracy, Precision, Recall, Fl-score, and False Alarm Rate—are
mathematically defined in Equations (9)—(13).

| ~ TP + TN
CCUracY = TP TN + FP + FN

X 100 9)
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o TP

Precision = TP L FP X 100 (10)
Recall = i X 100 11

AT TP FN b

PrecisionxRecall
F1 — score = 2 X Precision+Recall (12)
FP
False Alarm Rate = ———X 100 (13)
FP+TN

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives,
respectively. These metrics collectively evaluate overall correctness, detection capability, and
robustness of the anomaly prediction system.

Table 2. Anomaly detection performance comparison

Method Accuracy Precision Recall F1-score
(%) (%) (%) (%)
Digital Twin + XAl 94.8 + 1.1 94.1+1.3 95.4+1.0 94.7+1.2
(Proposed)
Standard ML (LSTM) 88.5+£1.9 87.3+2.1 89.0+1.8 88.1+2.0
Threshold-based Monitoring 82.9+2.6 81.2+28 83.4+25 823+27

Table 2 analyses the anomaly detection capabilities of the proposed digital twin-based XAI system,
traditional machine learning, and threshold-based monitoring. Across all evaluation metrics, the
proposed method consistently outperforms the baseline models with increased accuracy, precision,
recall, and F1 score with minimal variability. This highlights the effectiveness and strength of digital
twins combined with explainable Al for the dependable identification of fault indictable under varying
operational scenarios in an industrial environment. Performance comparison is presented in Table 2.
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Figure 5. Detection accuracy vs monitoring duration

In Figure 5, the accuracy of anomaly detection for different lengths of the monitoring period is shown.
The digital twin system rapidly learns and adjusts operational patterns and continues to demonstrate high
accuracy over prolonged periods.
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False Alarm Rate and Reliability Analysis

Figure 6 analyses the monitoring systems in terms of false alarm rates. Unlike standard machine learning
systems (7.9%) and threshold-based systems (11.6%), the Digital Twin plus XAl recorded an improved
false alarm rate of 4.1%. Reduced false alarms are highly valued in an industry setting to prevent
unnecessary machine shutdowns and conserve operational throughput.

False Alarm Rate Comparison of Industrial
Monitoring Systems

—_
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11.6

—
\S)

9.5

—
A O o O

False Alarm Rate (%)

[\

System Type

m Digital Twin + XAl ~ ®Standard ML  ® Threshold-Based PLC Monitoring

Figure 6. False alarm rate comparison

Detection Latency and Real-Time Capability

Average Detection Latency of Industrial
Monitoring Systems
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Figure 7. Detection latency analysis

Figure 7 highlights the real-time capability of the proposed digital twin—based XAl system, which
achieves a low detection latency of approximately 26-30 ms, enabling timely and effective anomaly
detection. Threshold monitoring techniques, by contrast, have about 60 ms latency, which can hinder
quick fault response. The latency here is lower because of edge feature processing coupled with digital
twin simulation, and deep learning, which make it possible to support fast responsive reliable predictive
maintenance decision.
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Discussion of Comparisons with Current Industrial Monitoring Systems
System-level comparison is shown in Table 3.

Table 3. Comparing industrial monitoring system performance

System Power Requirement Noise Continuous Intelligent
Robustness Monitoring Prediction
Digital Twin + Self-powered High Yes Yes
XAl (edge/DT optimized)
Standard ML Grid-powered Moderate Yes Limited
Monitoring
Threshold-based Grid-powered Low Yes No
Monitoring
PLC-based Grid-powered Moderate Yes No
Monitoring

The digital twin-based XAI monitoring model proposed improves on current models XAI monitoring
systems outlined in Table 3 in the measurable parameters of power efficiency, noise resilience,
intelligent predictive maintenance, and real-time adaptive monitoring.

Ablation Study

Component contribution is evaluated in Table 4.

Table 4. Ablation study evaluating the impact of system components on anomaly detection performance

Configuration Accuracy (%) F1-score (%)
Full system (Digital Twin + XAI) 94.8 94.7
Digital Twin only 91.2 91.0
XAI only (ML + Explainability) 89.5 89.2
Edge-level processing disabled 90.1 89.8

Integration of digital twin, XAl, and edge processing creates notable improvement in detection accuracy,
robustness, and real-time adaptive monitoring as evidenced in Table 4.

Discussion

The experimental results demonstrate that the proposed Hybrid Adaptive Digital Twin with Explainable
Al (HADT-C-XAI) framework significantly improves anomaly detection performance compared with
conventional machine learning and deep learning approaches. The achieved accuracy of 98.7%,
combined with high precision and recall values, indicates that the integration of real-time digital twin
synchronization with adaptive learning enables more reliable modeling of evolving industrial conditions.
Unlike static predictive models, the proposed framework continuously updates the virtual representation
of the physical system, thereby reducing concept drift and improving robustness under dynamic
operating environments. The superior performance can be attributed to three primary design factors.
First, the hybrid digital twin architecture combines physics-based knowledge with data-driven
intelligence, which enhances both model stability and generalization. Second, temporal feature
extraction captures both statistical and dynamic behavior of sensor signals, allowing early detection of
subtle deviations that precede equipment faults. Third, the inclusion of reinforcement-based decision
learning enables the system to adaptively refine classification policies over time, reducing false alarms
and improving detection sensitivity.

Another notable advantage of the proposed framework lies in its explainability. Traditional deep
learning—based anomaly detectors often behave as black-box systems, limiting operator trust and
practical adoption in safety-critical industrial settings. By incorporating feature attribution mechanisms,
the proposed approach provides interpretable insights into which sensors or operational parameters most

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N ” 34 1269



Dr. Kousalya, R. et al: Digital twin—based .... Archives for Technical Sciences 2025, 34(3), 1256-1272

strongly influence predictions. This transparency supports faster root-cause analysis, improves
maintenance planning, and facilitates human-in-the-loop decision-making. From a computational
perspective, the edge-enabled design reduces latency and bandwidth consumption by performing
inference closer to data sources. This architecture makes the system suitable for real-time Industrial IoT
environments where centralized cloud processing may introduce unacceptable delays. Furthermore, the
modular structure allows seamless integration with existing supervisory control and monitoring
infrastructures, enhancing deployment feasibility in legacy industrial systems.

Despite these advantages, several limitations remain. The current evaluation is conducted on a limited
number of industrial datasets and controlled environments, which may not fully capture the complexity
of large-scale heterogeneous factories. The computational overhead of maintaining high-fidelity digital
twins may also increase resource requirements for low-power edge devices. Additionally, while the
explainability module improves interpretability, more advanced causal reasoning mechanisms are
required to distinguish correlation from true fault causation. Addressing these challenges is essential to
ensure scalability, reliability, and broader industrial adoption.

Building upon these observations, future research will focus on large-scale real-world deployments,
lightweight digital twin compression, federated privacy-preserving learning, multimodal sensor fusion,
graph-based causal intelligence, autonomous maintenance optimization, and human-centered interactive
explainability to further enhance robustness and operational effectiveness.

CONCLUSION AND FUTURE WORK

The widespread integration of sensors across many industries has led to a need for real-time responsive
monitoring frameworks that can be more easily processed and understood. To address this issue, this
study proposed a novel digital twin industrial monitoring framework to be coupled with a causality
aware, explainable Artificial Intelligence model (C-XAI). The framework creates a flexible and dynamic
virtual model of industrial assets that is updated and synced across a variety of sensors, which supports
real-time predictive maintenance, operational insights, and anomaly detection. The digital twin and C-
XAl were able to demonstrate learning predictive maintenance across multiple scenarios with additional
sensors. The digital C-XAI model was able to provide real-time learning with explanations of the
unsupervised predictive systems of the C-XAI model and was able to show and explain the important
features and causal fragments of the system. The enhanced system interpretability provided additional
operator trust and supported the operator’s informed decision-making. The system demonstrated more
than 94% predictive system accuracy, provided additional false predictive system alarms in less than
5%, and supported operational decision-making in less than 30 milliseconds, demonstrating the system's
potential for real-time integration. Aside from technical nuances, the construction provides a dealable
and understandable solution that narrows the distance between the digital twin theory and the digital
twin practice in industrial monitoring systems. The fusion of adaptive learning and explainable
intelligence facilitates end process state description for continuous operation with less unplanned
downtimes and increased process reliability. The current state of validation, however, is limited to
controlled and semi-controlled environments, leaving the large scale, fully uncontrolled industrial
deployments to be curiosity. Furthermore, the deployment of the systems to resource-limited edge
devices is subject to privacy of data and inefficient computation.

Future research will focus on large-scale deployment of the proposed HADT-C-XAI framework across
heterogeneous industrial environments to evaluate scalability, robustness, and generalization under
diverse operational conditions. Lightweight and edge-optimized digital twin models will be developed
to enable deployment on low-power embedded devices and resource-constrained IloT gateways.
Federated and privacy-preserving learning mechanisms will be investigated to allow collaborative model
training without centralized data sharing, thereby improving data security and regulatory compliance.
Additionally, multimodal sensing integration, including thermal imaging, acoustic emission, and
vibration fusion, will be explored to enhance fault discrimination accuracy. Graph neural networks and
causal inference models will be incorporated to strengthen root-cause reasoning capabilities.
Reinforcement learning—based maintenance scheduling will also be studied to enable autonomous
decision-making. Finally, human-in-the-loop explainability and interactive visualization dashboards
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will be designed to improve operator trust, transparency, and industrial adoption of digital twin—enabled
monitoring systems.
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