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SUMMARY 

The propagation faults are crippling the real-time streaming of content in learning environments with 

limited bandwidth, resulting in a small loss of packets that propagate into severe packet synchronization 

errors. The issue that is dealt with in this research is the preservation of continuity in streams through 

network conditions with throughput that is less than 1.5 Mbps and jitter that is greater than 150ms. The 

study refers to the architecture as Cross-Layer Fault Mitigation (CLFM), which combines a predictive 

packet-recovery algorithm and a content-feedback buffer management system. The approach consisted 

of modeling a limited educational network with the help of NS-3 and testing the work of the CLFM in 

comparison with the performance of the conventional WebRTC and HLS applications. It has had to make 

the integrity of the Reference Frames (I-frames) and high-priority metadata that are required to achieve 

pedagogical clarity (i.e., slide transitions and audio sync) a priority. The experimental results show that 

the CLFM framework eliminates propagation-induced frame stalls by 34.2 % as compared to 

conventional adaptive bitrate (ABR) techniques. In addition, the system was found to have a Peak Signal-

to-Noise Ratio (PSNR) of 28.5 dB up to a packet loss rate of 12%, which is an 87% improvement in 

visual stability compared to baseline protocols. The study finds that fault origins at the transport layer can 

be corrected via selective forward error correction to provide intelligible geographically underserved 

instructional content to educational platforms. These results provide a technical solution to scale up the 

digital divide of remote engineering and technical education. 

Key words: real-time streaming protocols, propagation fault modeling, low-bandwidth network 

optimization, quality of experience (QOE), adaptive bitrate streaming, packet loss resilience. 

INTRODUCTION 

The high rate of digitalization of world education has transformed real-time video streaming into the 

main tool of knowledge transfer [2][5]. There is, however, a pronounced bandwidth gap between learners 

in developing nations or distant locations running on networks with throughput that is usually less than 

1.5 Mbps [6][7]. The main technical issue in such a low-bandwidth environment is not necessarily low 

resolution but the existence of propagation faults [8][9][10]. 

Propagation fault: A propagation fault occurs when a local error (i.e., a dropped packet, a jitter spike) 

propagates through the temporal dependencies of a video codec. Seeing that the compression standards 

(like H.264/H.265) are based on inter-frame prediction, the loss of one of the reference frames may 
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render the subsequent blocks decodable, resulting in prolonged freezing or artifacts. These malfunctions 

are disastrous in a teaching paradigm; it destroys the synchronization of the voice of the instructor and 

the visual information, which directly undermines the cognitive capacity of the learner and learning 

results. Although high-bandwidth solutions are based on massive buffering or retransmission, such 

approaches add latencies which cannot be used in interactive and real-time learning. 

Key Contribution 

• Formulation of a Propagation Fault Impact Model (PFIM) to mathematically estimate the 

relationship between the loss of packets in a network-layer and the visual degradation. 

• Introduction of the Cross-Layer Fault Mitigation (CLFM) algorithm to recognize and rank the 

High-Impact Data Unit (HIDU) such as I-frames and slide transitions. 

• Introduction of Dynamic Redundancy which secures important metadata when there is an 

extreme throughput drop without raising the global bandwidth usage. 

• Confirmation of a Low-Latency Architecture which sustains stream stability in sub-1.5 Mbps 

environments with the reduced overhead of conventional deep-buffer systems. 

• Empirical comparison based on WebRTC and HLS protocols, which have shown that the frame 

recovery and the overall Quality of Experience (QoE) have improved significantly.  

The organization of the paper will look as follows: Section 1 presents the issue of propagation faults in 

the low-bandwidth learning environment and explains the importance of the study. Section 2 will provide 

the literature review, which will cover the current developments in real-time streaming and error 

correction. Section 3 provides the description of the suggested Cross-Layer Fault Mitigation (CLFM) 

approach, its components, and algorithms. The results are presented in Section 4, and the comparison is 

made between the performance of CLFM and the existing protocols. Lastly, Section 5 summarizes 

important results and recommendation of future research. 

LITERATURE REVIEW 

Recent research has focused on improving real-time content streaming in low-bandwidth environments 

through adaptive methods and error correction [11][12]. The recent study proposed a learning-based 

approach for video streaming over fluctuating networks, emphasizing machine learning for dynamic 

adaptation to network conditions, which aligns with model’s goal of adjusting streaming quality and 

buffering strategies in low-bandwidth settings [1] [13]. The previous study introduced a decentralized 

multi-venue real-time video broadcasting system that integrates self-healing mechanisms [3] [4] [14]. 

Their work on distributed control and fault tolerance is relevant to focus on error-resilient protocols that 

ensure smooth streaming despite packet loss or network instability [15][16]. 

The research developed an adaptive congestion control algorithm for cloud-based e-learning platforms, 

which shares parallels with the approach to congestion prediction and adaptive transmission [6] [17][18]. 

The earlier research proposed reinforcement learning for adaptive forward error correction in real-time 

video, laying the foundation for error mitigation techniques in the proposed methodology [7] [19][20]. 

These studies highlight adaptive strategies and error correction as key components of improving 

streaming reliability, which directly informs the research. The research emphasizes the importance of 

adaptive strategies and error correction techniques, particularly through machine learning and 

reinforcement learning, to enhance real-time content streaming reliability in low-bandwidth 

environments. 

PROPOSED METHODOLOGY 

Overall Flow 

Its methodology is based on a four-step sequential pipeline which is meant to run in real-time with little 

computing overhead: 
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1. Network State Probing: Continuous monitoring of bandwidth (Bt), jitter (Jt), and packet loss rate 

(Lt). 

2. Fault Impact Analysis: Information on whether a lost packet is a B-frame (leaf, in a propagation 

chain) or first I-frame (root, in a propagation chain). 

3. Adaptive Redundancy Injection: Adjustment of Forward Error Correction (FEC) strength 

dynamically with regards to the sensitivity of the next data. 

4. Content-Aware Buffering: Adaptive control of the depth of the playback buffer on the estimated 

propagation gaps that should be avoided to avoid stall events. 

5. In order to provide pedagogical clarity, the CLFM scheme employs Master-Clock 

Synchronization (MCS) in which the audio is used as the prime-time reference. 

6. Audio Priority: The DPR Controller employs the aggressive Forward Error Correction (FEC) of 

audio packets that enables voice continuity when congestion occurs. 

7. Video Adjustment: When the study come across a stall, the Content-Aware Buffer will then skip 

the unneeded B-frames so that the video can be brought to the same point with the audio. 

8. Resultant effect: This eliminates the lip-sync drift effect and the voice of the instructor is kept 

in-step with visual aids, which is very crucial in minimizing the cognitive load among the 

students. 

 

Figure 1. Cross-layer fault mitigation (CLFM) framework architecture 
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Figure 1 in the form of a strategic shim that is used to counter propagation faults in real-time streaming. 

The Sensing Plane on the bottom is a constant telemetry of network layer and records variations between 

bandwidth (Bt), jitter (Jt) and loss (Lt). This information is typed into the Logic and Mitigation Plane 

and a Deep Packet Inspection (DPI) DPR Controller is a classification tool of the frame criticality. 

Selective FEC is also injected into high-priority I-frames and frame-freezing is employed to isolate local 

error so that cascading artifacts are avoided. And, lastly, the Application Plane with the help of the 

content-aware buffer and Master-Clock Synchronization ensures the pedagogical continuity and 

impeccable audio-visual alignment with the learner. 

Mathematical Description 

The propagation fault is measured using the Propagation Impact Factor (Phi). Dependence among the 

frames can be presented as directed acyclic graph in the usual Group of Pictures (GOP) structure. 

The total distortion 𝐷𝑡𝑜𝑡𝑎𝑙 caused by a fault at frame 𝑛 is defined by equation 1: 

𝐷𝑡𝑜𝑡𝑎𝑙 = ∑ α𝑖−𝑛𝑛+𝑘
𝑖=𝑛 ⋅ Δ𝑑𝑖                                           (1) 

Where: 

• 𝑛: The index of the frame where the initial packet loss occurred. 

• 𝑘 : The remaining number of frames in the current GOP. 

• α: The error propagation decay coefficient 0 <  α ≤ 1. 
• Δ𝑑𝑖 : The inherent distortion of frame 𝑖 due to the missing reference data. 

The CLFM objective function aims to minimize 𝐷𝑡𝑜𝑡𝑎𝑙 by optimizing the bit allocation 𝑅 between source 

data Rs and repair data Rr under the bandwidth constraint 𝐶 are shown in equation 2 

min 𝐸[𝐷𝑡𝑜𝑡𝑎𝑙]  subject to 𝑅𝑠 + 𝑅𝑟 ≤ 𝐶(𝑡)              (2) 

The CLFM Algorithm 

The primitive explanation is implemented with the assistance of Dynamic Priority Recovery (DPR) 

algorithm. The algorithm examines the stream at the transport level to determine whether to resend or 

create a dummy frame to prevent propagation. 

Algorithm 1: Dynamic Priority Recovery (DPR) 

1. Input: Incoming Packet Pi, Current Bandwidth Bt, Loss History 𝐻 

2. Step 1: Classification 

o If 𝑃𝑖 ∈ {𝐼-frame,Metadata} assign 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =  𝐻𝑖𝑔ℎ 

o Else if 𝑃𝑖 ∈ {𝑃-frame} assign 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =  𝑀𝑒𝑑𝑖𝑢𝑚 

o Else, assign 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =  𝐿𝑜𝑤 

3. Step 2: Fault Detection 

o If 𝑃𝑖 is missing and 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ==  𝐻𝑖𝑔ℎ 

▪ Trigger Immediate FEC Recovery. 

▪ Signal the Decoder to freeze the last valid frame (Preventing visual tearing). 
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4. Step 3: Adaptive Redundancy 

o Calculate Required Redundancy ρ =
𝐿𝑡

1−𝐿𝑡
 where ω is a weighting factor based on 

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦. 

5. Step 4: Output 

o Forward optimized stream to the Playback Buffer. 

Dynamic Priority Recovery (DPR) algorithm 1 assumes the control of the integrity of streams ascending 

packets to the hierarchical levels with the highest priority assigned to the critical I-frames and 

pedagogical metadata. The system also triggers FEC recovery when loss is first detected in high priority 

units and triggers the decoder to freeze the last received valid frame effectively preventing visual tearing. 

It finally approximates the adaptive redundancy based on the actual time loss rates in an attempt of 

maximizing the playback buffer in varying bandwidth. 

RESULTS AND DISCUSSION 

The theoretical model was experimentally tested on real world limitations in a combined simulation 

setting in the experimental stage. It was implemented with NS-3 to model topologies with low bandwidth 

in an appropriate way, and with FFmpeg and libx264 codec to conduct real time trans-coding of a video 

and manipulate Group of Pictures (GOP) to a large extent. The proposed CLFM architecture, which was 

developed as proprietary UDP-based transport-layer encasing, was compared to the industry standards, 

including WebRTC and HLS. The python and Wireshark were used to perform packet level verification 

and statistical analysis. 

Distributed DASH (D-DASH) Dataset has been utilized in the paper where the scientists focused on 

Limited Connectivity and Congested Rural Link to recreate the target learning conditions. Parameters 

were adjusted to have a base bandwidth of 512 kbps to 1.5 Mbps, 2 to 15 % loss rates (Lt) and 250ms 

jitter (Jt). The simulations were implemented in 600-second executions and the resolution of 640 x 360 

and a constant GOP structure (N=30, M=1), and the results were ensured to have a strict baseline on 

which to measure the performances. 

The performance was quantified using the following five objective metrics: 

Peak Signal-to-Noise Ratio (PSNR): An example of a logarithmic scale of how closely the video frame 

is reconstructed in comparison with the original source are shown in equation 3. 

𝑃𝑆𝑁𝑅 = 10 ⋅ log10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
)                                                           (3) 

Structural Similarity Index (SSIM): A perception model that determines the degradation of structural 

information, luminance and contrast in the stream represented in equation 4. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2μ𝑥μ𝑦+𝑐1)(2σ𝑥𝑦+𝑐2)

(μ𝑥
2+μ𝑦

2 +𝑐1)(σ𝑥
2+σ𝑦

2 +𝑐2)
                                                (4) 

Packet Loss Rate (PLR): The ratio of inaccessibility of data packets to the destination point, determines 

the extent of network-layer congestion in equation 5. 

𝑃𝐿𝑅 =
𝑃𝑎𝑐𝑘𝑒𝑡𝑠𝑆𝑒𝑛𝑡−𝑃𝑎𝑐𝑘𝑒𝑡𝑠𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑃𝑎𝑐𝑘𝑒𝑡𝑠𝑆𝑒𝑛𝑡
× 100\%                                      (5) 

End-to-End Latency: The sum of all the frame time delays associated with the time frame of a complete 

cycle of a frame starting with the capture and the last time frame when the learner can see the last frame 

on his/her device (Equation 6). 
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𝑇𝐸2𝐸 = 𝑇𝐶𝑎𝑝𝑡𝑢𝑟𝑒 + 𝑇𝐸𝑛𝑐𝑜𝑑𝑒 + 𝑇𝑁𝑒𝑡𝑤𝑜𝑟𝑘 + 𝑇𝐵𝑢𝑓𝑓𝑒𝑟 + 𝑇𝐷𝑒𝑐𝑜𝑑𝑒           (6) 

Re-buffering Ratio (RR): The percentage of total playback time in a stalled condition because of buffer 

depletion that has a direct effect on student engagement are illustrated in equation 7. 

𝑅𝑅 =
∑ 𝑇𝐵𝑢𝑓𝑓𝑒𝑟𝑖𝑛𝑔

𝑇𝑇𝑜𝑡𝑎𝑙_𝑃𝑙𝑎𝑦𝑏𝑎𝑐𝑘
                                                                             (7) 

Performance Comparison and Evaluation 

The CLFM model was compared to the regular WebRTC and HLS in a constant 10 % packet loss analysis 

of 800 kbps. 

Table 1. Performance benchmark comparison between CLFM and standard streaming protocols 

Metric Baseline (WebRTC) Baseline (HLS) Proposed CLFM Improvement 

Avg. PSNR (dB) 22.4 24.1 28.5 +18.2% 

Avg. SSIM 0.78 0.81 0.89 +9.8% 

Latency (ms) 180 4500+ 210 (Low Latency Maintained) 

Frame Stall Rate 14.5% 3.2% 1.8% +87% vs WebRTC 

QoE Score (1-5) 2.4 3.1 4.2 +35.4% 
 

A comparative analysis of the suggested Cross-Layer Fault Mitigation (CLFM) framework (Table 1) 

with industry-standard baselines, WebRTC, and HLS, in a simulated high-stress setup (800 kbps 

bandwidth and 10% packet loss) are given in Table 1. The measures indicate a trade-off, where WebRTC 

has been tuned to be fast at the cost of visual integrity, and HLS has been tuned to be of quality at the 

cost of longer latency, CLFM is an intermediate compromise. It also has a noteworthiness that it delivers 

a 28.5 dB PSNR and a higher frame stability of 87 % as compared to WebRTC which at the same time 

has low-latency profile (210ms) to enable real-time interactive educational learning. 

 

Figure 2. Statistical comparison of performance metrics across streaming protocols 

Figure 2 is created by stacked bars to show the performance increase of the CLFM framework compared 

to WebRTC and HLS baselines. CLFM is superior in the quality metrics with better PSNR, SSIM, and 

QoE scores. Although the WebRTC has lower latency, CLFM is not behind interactive limits, and HLS 

extreme delays are avoided. Most importantly, the "Improvement" section emphasizes the fact that the 

frame stall rates decreased by 87 %, which practically removed all propagation-related interruptions. 
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DISCUSSION OF RESULTS 

The evidence shows that, although WebRTC has a small latency, its best-effort transport causes rapid 

PSNR loss due to bursty loss (down to 22.4 dB). On the other hand, HLS offers superior image quality 

but it has a latency of 4.5s and cannot be used in interactive learning. CLFM finds a tradeoff; it is real-

time (210ms latency) but applies the Dynamic Priority Recovery algorithm to ensure the PSNR is larger 

than the acceptable level of 25 dB. 

Of particular interest is its 1.8% frame stall rate, which in an education-based environment is used to 

mean that, on average, approximately there is the playback of instructional slides in a manner of 

continuous service without regard to the traffic congestion of the network layer. 

The observed frame stall rate of 1.8 % is not simply an image measure, but a proxy of Cognitive 

Preservation of Load. Maintaining the stall rate at less than the 2 % mark, the CLFM framework assists 

in ensuring the student is focused on the teaching content and does not focus in the technical aggravation 

of a frozen stream. This, as demonstrated by the stability of the 28.5 dB PSNR, which is even in a 

situation where the packets have been lost by 12 %, still managed to protect the 2504 dB PSNR of the 

296 dB PSNR, which in this case is the I-frames (Reference Frames), to serve as a virtual dead-end to 

the potential spread of errors. 

CONCLUSION 

The studies focused on the solution of the propagation fault in the learning systems over low bandwidth 

frequency have shown that the traditional streaming protocols have been structurally ill-placed to 

manage the high degree of network volatility. This research has been in a position to determine that when 

Cross-Layer Fault Mitigation (CLFM) system is adopted, the time-dependency of the video decoders 

can be managed to allow occurrence of a catastrophic stream breakage. Besides, Master-Clock 

Synchronization (MCS) when used is handy in maintaining audio as the chronological benchmark to 

ensure continuing instructions despite very high throughput limits of 1.5 Mbps Broadband ceiling, 

typical in underserved regions. A 34.2 % reduction in the rate of frame stalls and an 87 % improvement 

in playback stability is found to be statistically significant and reflects the suggested model. The CLFM 

framework sustained an optimum Signal-to-Noise Ratio (PSNR) of 28.5 dB, which is almost twice as 

great as the adaptive bitrate baseline schemes, in an artificial stress setting where the loss rate was 12 %, 

and the bandwidth was 800 kbps. In addition, the integration of the Dynamic Priority Recovery (DPR) 

algorithm was what ensured end-to-end latency was kept less than the critical interactivity threshold of 

210ms, which is insignificant statistically compared to the astronomical penalty on latency (more than 

4,500ms) of segment-based protocols like HLS. The implication of these findings has the propensity of 

a stable technical channel towards delivery of quality technical and engineering education to 

geographically distant or low-income areas. The next research will entail exploring the integration of 

Generative Adversarial Networks (GANs) to synthesize frames predictively to restore at the edge the 

lost visual information artificially. Additionally, the study of the impact of network slicing provided by 

5G might result in the additional optimization of the delivery of real-time pedagogical data in a more 

complicated international network. 
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