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SUMMARY

The concept of monitoring conditions with the help of Al has become a significant aspect of Industry 4.0
that enhances machine reliability and provides predictive maintenance. However, the models of anomaly
detection based on deep learning are not readily implemented because of their lack of interpretability.
The article introduces a novel anomaly detection model of vibration signals using a Transformer and
augmented with Shapley Additive exPlanations (SHAP) to provide the accountability of the model. To
improve the power of the model in diverse circumstances, the hybrid approach of Wavelet Transform and
Variational Mode Decomposition (WT-VMD) preprocessing technique is used to get meaningful time-
frequency features. The proposed model was tested on an industrial vibration dataset, and the accuracy
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of anomaly detection is 99.2%, and the fidelity of SHAP elucidation is 88%. An experiment that used 50
industrial maintenance experts as the subjects showed that the level of trust grew by 45 % and the
decision-making process became 30 times faster using explainable exploratory models than using non-
explainable models. The results illustrate that the Transformer-based method is more effective in
increasing the detection performance and interpretability, which is required in industrial predictive
maintenance. This model allows implementing Al in industrial systems by defining fault detection in a
clear way that facilitates the realization of the maintenance plans and makes it more reliable. The paper
has demonstrated the potential of the application of deep learning, along with an interpretable model, in
solving the issue of fault diagnosis and condition monitoring in the complicated industrial environment.

Key words: anomaly detection, transformer networks, SHAP explainability, vibration signal processing,
predictive maintenance, bearing fault diagnosis, industrial Al interpretability.

INTRODUCTION

Machines just like the components of the human body that work in synchrony, are composed of various
functional parts that work in collaboration to achieve similar goal. To realize optimum performance, the
maintenance of machine health is needed which has been enhanced by constant monitoring of sensory
information of equipment. Similar to the doctors, reliability professionals review this information in
order to locate signs of component degradation which may require replacement or repair. An important
and necessary part of the operations maintenance in industry has fundamentally altered since the
Industrial Revolution. Maintenance is a critical factor in the success of industrial processes and therefore
machine health directly relies on the maintenance. In general, the faults are categorized into different
phases by their importance and the performance observed during data analysis. Rolling bearing elements
are a significant component of most industrial machineries. A bearing only allows the relative motion
of moving parts to be limited to the desired motion. Bearings apply the load with the help of rolling parts
such as balls, tapered and straight cylinders, spherical rollers. The different failure modes exhibited by
roller element bearings can be determined using waveform and spectrum data. The fault of bearings is
an important question to be answered. Bearings should provide reliable services in terms of their required
lifetime when specified, transported, stored, installed, lubricated and utilized appropriately.

Most of these factors are not managed properly and therefore bearings have a lifespan of an average of
10 percent of the expected lifespan. There are two primary solutions to this problem: the first one is to
ensure that the bearings are kept in the right position so that they can last long, and the second one is to
install monitoring devices to detect potential issues in time to prevent an apocalyptic breakdown.
Condition monitoring is based on data that sensors gather as a machine is in operation. With other
elements, other types of data are collected and whereas experts can use homogenous data, they can
enhance accuracy by looking at heterogeneous data. Vibrational data is typically sufficient to make
informed choices on bearings. This data is analyzed in frequency and time domain depending on the
requirements. The four basic frequencies of bearing defects of interest are ball pass outer race (BPGO),
ball pass inner race (BPFI), fundamental train (FTF) and ball spin frequency. The general nature of
bearing defects can be detected and even predicted by expert systems. When working with acceleration
in particular, it is often much easier to find early-stage wear when the vibrational data is analyzed in the
frequency domain. Most of the faults occur in the BPFO and BPFI frequencies. The specialists that are
in charge of reliability look at the data of the senses through online monitoring systems that are
developed by industries in order to identify abnormalities and locate problems as they appear. The ideal
scenario is to forecast an error and prevent failures even before they occur. Systems require large
amounts of historical information to identify abnormal trends. Human beings have a hard time doing
this, but with practice it can be practiced, though there is a possibility of human error. Moreover, human
beings cannot monitor data in hundreds of sensors, especially heterogencous data. In such cases,
artificial intelligence is very important as it helps to analyze large volumes of heterogeneous data in real
time, which will improve fault detection and prediction (Figure 1).
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Figure 1. Causes of bearing failures in industrial machines

The integration of the latest artificial intelligence methods has made it possible to improve prognostics
and health management (PHM) capabilities within the framework of Industrial Cyber-Physical Systems
(ICPS) [1]. All the deep learning networks to be discussed as solutions in ICPS fault diagnosis and
predictive analysis include Autoencoders, Deep Belief Networks, Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), Knowledge Graphs, Graph Neural Networks (GNNs) and
Transformers [2][3]. All the models possess their peculiar opportunities and difficulties [4].
Autoencoders are appreciated due to their capability to operate without labeling and could be optimized
with the help of different strategies that are easy to implement [5]. Nevertheless, they tend to fail to
achieve the relevance of complex information and need to undergo pre-training which reduces their
application on real time applications [6]. Deep Belief Networks can deal with unlabeled data and
diminish overfitting and underfitting as well as are appropriate to unidimensional data [7]. They
however, have deficiencies in low training periods and performance constraints in the pre-training period

[8].

The CNNs can be efficient at adaptive feature extractors and may be useful to two dimensional data, but
large volumes of labeled data and extensive training time are required, so they are not scalable [9][10].
Although outstanding in dealing with serial data and predicting time-dependent relationships, RNNs are
subject to training challenges such as a gradient disappearing and exploding, and stacking of the
networks is an issue [ 11]. Knowledge Graphs enhance the data search process and relationship depiction,
but they fail to provide all the information and have low language understanding [12]. GNNs are also
interpretable and reasoning, whereas they can operate with complex topologies, but are limited by
arbitrary size of graphs and computational problems [13].

Transformers have become popular due to their capability to model long-range dependence and use
global attention mechanism that can store positional information across sequences [14][18][19]. They
are very powerful but are highly limited, with computational complexity, sensitivity to length of input
sequences, which demand very large amounts of data and computational resources [15][16][17]. Even
though they are quite successful, current Transformer-based methods of identifying anomalies are not
always interpretable, which means that industrial specialists cannot rely on their results [20].

Despite the excellent performance reported by Transformer-based models in different areas, little has
been done to explainable anomaly detection. Conventional methods do not offer clear information
regarding model decisions, and it is difficult to win the confidence of operators. Moreover, most
Transformer-based models are computationally intensive and demand a significant amount of resources
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to be trained and deployed in real-time, which might not be practicable in an industrial setting with
resource limits.

In order to overcome these shortcomings, this paper presents a Transformer-based anomaly detection
architecture, which incorporates SHapley Additive exPlanations (SHAP) as a model interpretability
framework. The proposed method does not only increase the accuracy of the anomaly detection, but also
gives a local and global understanding of the model decision-making, which generates transparency and
trust. The proposed method results in the efficient extraction of features in its presence by employing a
hybrid Wavelet Transform and Variational Mode Decomposition (WT-VMD) algorithm which
guarantees the method to be reliable in different operation conditions. This performance and
explainability combination fills the key gaps in the existing Transformer-based models of anomaly
detection and makes the framework more feasible to use in industries.

Key Contribution

e Presents a Transformer-based vibration signal-based anomaly detection model in industrial
systems and uses attention mechanisms to improve its performance.

e Uses SHapley Additive exPlanations (SHAP) to offer local and global explainability, enhancing
model openness and trust between maintenance experts in the industrial environment.

o Integrates a Wavelet Transform and Variational Mode Decomposition (WT-VMD) preprocessing
algorithm that can be effectively used to extract vibration signal features in a robust way, which
is reliable in diverse working conditions.

e Achieves an anomaly detection accuracy of 99.2% and an explanation fidelity of SHAP of 88%,
showing that the model is practical and reliable in the actual industrial setting.

e Performs a user experiment with a 45 % increase in trust and a 30 % reduction in time to make a
decision over non-explainable baseline models demonstrating the practicality of explainability in
predictive maintenance.

The paper is structured in the following way: Section 1 presents the research problem of anomaly
detection in industrial systems based on vibration and mentions the necessity of interpretability in the
Al models. Section 2 used the methodology that covered the data collection, preprocessing with WT-
VMD, feature extraction, and the Transformer-based model with SHAP to achieve interpretability.
Section 3 will provide the results, which will consist of the performance of the model, contributions of
the features, and comparison with the existing models. Section 4 gives a conclusion and future directions.

METHODOLOGY
Proposed Framework

The proposed framework (Figure 2) of vibration-based anomaly detection in industrial machinery
comprises five steps, namely: acquire data preprocess it extract features use a Transformer-based model
to detect anomalies and use SHAP to interpret the results. It is the Transformer-based attention that
enhances the ability of the models to detect complex patterns and the hybrid Wavelet Transform (WT)
and Variational Mode Decomposition (VMD) method ensures dependable features extraction. Increase
in interpretability and trust make SHAP-based explanations to be more quick and intelligent in making
decisions.
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Figure 2. Architecture of the proposed framework

Data Collection and Preprocessing

The study made use of openly accessible industrial vibration datasets that included time-series data
collected from different machine parts such as motors shafts and bearings which is shown in table 1. To
ensure a balanced representation of various anomaly patterns the datasets included both normal and
faulty operational states. Using a hybrid Wavelet Transform and Variational Mode Decomposition (WT-
VMD) technique the raw vibration signals were preprocessed.

Table 1. Descript of data collection

Stage Description Purpose
Publicly available industrial vibration To ensure access to diverse and
Data Source e .
datasets realistic operational data
Time-series data from machine To capture temporal variations
Data Type . :
components (bearings, shafts, motors) and operational states
To provide a balanced
Operational States Normal and faulty states representation of anomaly
patterns
. Hybrid Wavelet Transform and . .
Preprocessing L .. To enhance signal clarity and
Technique Variational Mode Decomposition (WT- feature extraction
1 VMD)
Wavelet Transform Decomposes signals into different To ideptify transient apd.non-
frequency bands stationary characteristics
Variational Mode Separates signals into intrinsic mode To reduce noise and improve
Decomposition functions (IMFs) feature accuracy

Wavelet Transform (WT)

By splitting the vibration signals into distinct frequency bands using the Wavelet Transform (WT) it was
possible to identify the signals transient and non-stationary features. In contrast to the Fourier Transform
which solely examines signals in the frequency domain WT offers a time-frequency representation
making it possible to spot abrupt shifts in signal patterns that could be signs of early-stage issues. WT
uses wavelets which are scaled and translated versions of a mother wavelet as a collection of basic
functions (figure 3). This makes WT very effective at identifying localized anomalies like bearing cracks
and misalignments because it can record both short-duration and long-duration signal variations. The
energy distribution of the signal across various frequency bands is represented by the coefficients that
are produced by the decomposition and are then examined for fault diagnosis and identification.
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Figure 3. Wavelet transform (WT)
Variational Mode Decomposition (VMD)

A predetermined number of intrinsic mode functions (IMFs) which represent the various oscillatory
modes contained in the signal were obtained by further decomposing the signals using VMD. Using a
limited variational framework VMD adaptively divides the signal into modes with particular frequency
content. As a result mode mixing and signal distortion are reduced during the extraction process. Signal
clarity and noise reduction are improved by VMDs capacity to isolate discrete frequency components
while maintaining the integrity of the original signal. By ensuring that both low-frequency and high-
frequency components are efficiently captured WT and VMD work together to improve fault detection
accuracy and dependability. A thorough understanding of the signals time-frequency properties is
provided by the combination of VMD and WT which increases the models sensitivity to early-stage
flaws.

Feature Extraction

In order to create a rich feature set for model training significant statistical and spectral features were
taken out of the decomposed signals after the preprocessing stage. Mean variance skewness and kurtosis
were time-domain characteristics that shed light on the signals amplitude and distribution. Kurtosis
denotes the presence of sharp peaks in the signal which are frequently associated with mechanical
impacts variance indicates the degree of signal fluctuation skewness measures the asymmetry of the
signal distribution and mean denotes the signals central tendency. Peak frequency bandwidth and power
spectral density were examples of frequency-domain characteristics that captured the distribution of
signal energy and the main frequency components. To measure the complexity and irregularity of the
vibration signals entropy-based features like permutation entropy and Shannon entropy were also
calculated. Chaotic signal behavior which can be a sign of structural instability or mechanical wear is
frequently associated with high entropy values. To prevent bias during model training and enhance
learning convergence the extracted features were normalized to a consistent scale using z-score
normalization. By using a thorough feature extraction approach the model was able to precisely
distinguish between normal and defective states by capturing both time-dependent and frequency-
dependent signal characteristics.

Transformer-Based Attention Model

By using the self-attention mechanism to capture intricate temporal dependencies in the vibration data a
Transformer-based attention model was created for anomaly detection. Several encoder layers made up
the Transformer models architecture and each encoder processed the input sequence by going through a
number of crucial elements. To capture interdependencies between various time steps within the
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vibration signals the Multi-Head Self-Attention (MHSA) mechanism which is the central component of
the model computes attention scores across the input sequence. The self-attention mechanism has the
following mathematical definition in equation 1.

Attention (Q,K,V) = softmax(F)V (D

where Q, K, and V represent the query, key, and value matrices, respectively, and dkd kdk is the
dimension of the key.

QKT
k

The output from the multi-head attention block is passed through a Feedforward Neural Network (FFN),
which introduces non-linearity to the model and improves feature representation. The FFN can be
defined as equation 2:

FFN(x) = max(0,xW; + by)W, + b, 2)

where x is the input feature vector, W1 and W2 are weight matrices, and b1 and b2 are bias terms. Layer
normalization and dropout were applied after the attention and feedforward blocks to improve training
stability and reduce overfitting.

SHAP-Based Model Interpretability

To provide both local and global interpretability of the models decisions SHapley Additive exPlanations
(SHAP) was incorporated into the Transformer-based anomaly detection model. A unified framework
for analyzing the results of cooperative game-theory-based machine learning models is called SHAP. It
quantifies the influence of each input feature on the models predictions by assigning contribution values
to each one. SHAP provides a consistent and equitable explanation of the models behavior by ensuring
that the sum of the feature contributions equals the discrepancy between the actual prediction and the
expected model output. This enhances model transparency and builds confidence among maintenance
professionals by making it possible to identify the crucial features that are in charge of the anomaly
classification.

The SHAP value for a specific feature xix_ixi in a model prediction f(x)f(x)f(x) is computed as follows
equation 3:

ISI!AFI-IS|-1)!

?:(f) = ZSQF\{i}T [f(SU{D — f(9)] (3)

where:

o ¢i(f) = SHAP value for feature xix_ixi

o F =Set of all features

o S = Subset of features excluding iii

e f(S) = Model prediction using the feature set SSS

e |S]| = Number of elements in subset SSS

o |F| = Total number of features

SHAP-based insights provided several advantages in improving model transparency and increasing trust
among industrial maintenance professionals:

1. Determination of Critical Features: SHAP determined that the frequency-domain features (e.g.
peak frequency, bandwidth) were more important in the model predictions compared to the time-
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domain features.

2. Early-stage Faults Detection: The high SHAP values of kurtosis and skewness in samples of
early-stage anomalies showed that these two characteristics were sensitive to mechanical wear
and imbalance.

3. Model Debugging: SHAP values were used to identify faulty model behavior by identifying
discrepancies in the feature contribution behavior of similar test samples.

4. Better Decision-Making A 50-participant user study in industrial maintenance showed that, on
SHAP-based explanation baselines, there was a 45% higher trust and a 30% faster decision time
than no explanation control conditions.

SHAP made it possible to understand the behavior of the model comprehensively by giving both local
and global explanations. This further boosted the self-confidence of the maintenance professionals to
implement the model in the real-time detection of anomalies and efficient maintenance planning.

RESULTS AND DISCUSSION

The proposed Transformer-based anomaly detection framework was evaluated using industrial vibration
datasets comprising time-series data from bearings, shafts, and motors under both normal and faulty
operational states. Accuracy precision recall F1-score and SHAP explanation fidelity were among the
evaluation metrics used to gauge the frameworks performance. The extracted time-domain and
frequency-domain features were also thoroughly examined to determine how well they contributed to
anomaly classification.

The proposed model was run on Python 3.8 as the programming language; deep learning model
development was carried out using TensorFlow 2.6 and Keras 2.6. NumPy 1.21, Pandas 1.3, Matplotlib
3.4, and SHAP 0.39 have been used as other libraries to manipulate, visualize, and explain the models.
It was implemented on an Ubuntu 20.04 LTS operating system and used an NVIDIA RTX 3090 based
in computation-intensive tasks.

To test the proposed anomaly detection model, the study employed a publicly available dataset of
industrial vibration time series from different machine parts, including bearings, motors, and shafts. The
data set has 10,000 samples of time-series (1024 data points) and a rate of 1 kHz. The data is divided
into training, validation and test data with 70 % of the data being used in the training process, 15 % in
the validation process and 15 % in testing. This equal representation provides that both normal and faulty
working conditions are sufficiently represented to perform tasks of detecting anomalies.

The performance of the proposed model was evaluated using the following standard metrics:

Accuracy: Equation 4 is used to measure the general accuracy of the model predictions. It is determined
to be a ratio of correct predictions to total number of predictions.

TP+TN
TP+TN+FP+FN

4)

Accuracy =

Where, TP= True Positives, TN= True Negatives, FP= False Positives and, FN= False Negatives

Precision: Precision (Equation 5) is the percentage of correct predictions that are made which shows
how the model is able to determine positive cases.

TP
TP+FP

&)

Precision =

Recall (Sensitivity): Equation 6 is the percentage of successful identifications of all positive cases by
the model.
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TP

Recall = TN (6)

F1-Score: Equation 7 is the harmonic mean of precision and recall which offers a balanced measure
where there is an imbalanced class distribution (i.e., when the cost of false positives and false negatives
are different).
PrecisionXRecall

F1-Score = 2 X Precision+Recall (7)
SHAP Explanation Fidelity: SHAP explanation fidelity is used to see whether the SHAP values (that
explain the predictions of the model) are accurate predictors of the actual decision-making process of
the model. It is generally measured by the contribution of the input features used in the decision of the
model to the corresponding SHAP values are shown in equation 8.

?=1 |SHAP;—Contribution;|

-, IContribution;|

SHAP Fidelity = 1 — (8)

Where, SHAP;= SHAP value for feature { and Contribution;= Model's contribution for feature i.
Model Performance Across Different Dataset Splits

The generalization ability and robustness of the model were assessed through the use of five distinct
dataset splits. The accuracy precision recall F1-score and SHAP explanation fidelity attained for each

split are shown in Table 2 and figure 4.

Table 2. Model performance across different dataset splits

Dataset Accuracy Precision Recall F1-Score SHAP Explanation
Split (%) (%) (%) (%) Fidelity (%)
Split 1 98.6 96.2 97.8 97 87.5

Split 2 99.1 97.8 98.2 98 88.3

Split 3 99.2 98.1 98.5 98.3 88

Split 4 98.8 97.4 98 91.7 87.7

Split 5 99 98 98.4 98.2 88.1

In every dataset split the suggested model performed consistently and well. Split 1 had the lowest
accuracy of 98. 6 % while Split 3 had the highest accuracy of 99. 2 %. The models efficacy in lowering
false positives was demonstrated by the consistently high precision values with Split 3 obtaining the
highest value at 98. 1%. The model's ability to accurately detect true positives was confirmed by recall
values ranging from 97.8% to 98.5%. The F1-score which measures how well recall and precision are
balanced reached its highest point in Split 3 at 98. 3%. Split 2 saw the highest SHAP explanation fidelity
which gauges how well the SHAP values match the models decision-making process at 88. 3 %. This
suggests that consistent and trustworthy insights into the models decision-making process were offered
by the SHAP-based interpretability approach.

600
500
400 N ] N N —
300
200
100
0 . I . . I
Accuracy (%) Precision (%) Recall (%) F1-Score (%) SHAP Explanation
Fidelity (%)

mSplit1 ®mSplit2 =mSplit3 = Split4 ®mSplit5

Figure 4. Model performance across different dataset splits
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Feature Contribution Based on SHAP Values

To ascertain each features contribution to the models decision-making process SHAP values were
combined. The range of values for important features standard deviation and mean SHAP values are
shown in Table 3 and figure 5. 0. 245 was the highest mean SHAP value observed in peak frequency
with a minimum of 0. 210 and a maximum of 0. 278.

Table 3. Feature contribution based on SHAP values

Feature Mean SHAP Value | Standard Deviation | Minimum | Maximum
Peak Frequency 0.245 0.023 0.21 0.278
Kurtosis 0.188 0.015 0.164 0.202
Skewness 0.176 0.018 0.155 0.192
Power Spectral Density 0.232 0.02 0.211 0.256
Entropy 0.205 0.017 0.185 0.225

This suggests that peak frequency had the greatest overall impact on the choices made by the model.
Additionally the power spectral density had a significant mean SHAP value of 0. 232 with a range of 0.
211 to 0. 256. In terms of the models performance kurtosis and entropy both made moderate
contributions with mean SHAP values of 0. 188 and 0. 205 respectively. Skewness had the least effect
on model predictions as evidenced by its lowest mean SHAP value of 0. 176. However the models
consistent decision-making process is reflected in the comparatively low standard deviation across all
features.

0.3
0.25

0.2 \ e
0.15
0.1
0.05
0

Peak Frequency Kurtosis Skewness Power Spectral Entropy
Density
o= Mean SHAP Value Standard Deviation Minimum Maximum

Figure 5. Feature contribution based on SHAP values
Performance of Preprocessing Techniques
The effectiveness of the hybrid Wavelet Transform and Variational Mode Decomposition (WT-VMD)
preprocessing technique was evaluated in terms of signal-to-noise ratio (SNR), noise reduction, and

computational time. Table 4 and figure 6 presents the results.

Table 4. Performance of preprocessing techniques

Technique | Signal-to-Noise Ratio (SNR) (dB) | Noise Reduction (%) | Computational Time (s)

WT 24.1 425 1.45
VMD 26.3 47.8 2.01
WT + VMD 30.4 53.2 2.89

The hybrid WT-VMD approach produced the highest SNR of 30.4 dB and the highest noise reduction
of 53.2%. The computational time for the hybrid technique was 2.89 s, which was higher than the
individual WT and VMD approaches. Despite the increase in processing time, the superior SNR and
noise reduction demonstrated the effectiveness of the combined preprocessing technique.
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Figure 6. Performance of preprocessing techniques

Comparison of the Proposed Transformer-Based Model with Existing Models

To evaluate the effectiveness of the proposed Transformer-based anomaly detection framework, its
performance was compared against existing state-of-the-art models, including Convolutional Neural
Networks (CNN), Long Short-Term Memory Networks (LSTM), Gated Recurrent Units (GRU), and
Support Vector Machines (SVM). The comparison focused on key performance metrics such as
accuracy, precision, recall, F1-score, and SHAP explanation fidelity. The results are presented in Table
S.

Table 5. Comparative analysis of the proposed model with existing models

Model Accuracy Precision Recall | F1-Score SHAP Explanation
(%) (%) (%) (%) Fidelity (%)
CNN 93.8 92.5 91.2 91.8 -
LSTM 95.1 94.2 93.5 93.8 -
GRU 96.4 95.5 94.7 95.1 -
SVM 89.6 87.8 88.1 88 -
Proposed
Model 99.2 98.1 98.5 98.3 88

Its self-attention mechanism, which successfully captured long-range dependencies and temporal
patterns, allowed the proposed model to achieve the highest accuracy of 99. 2 %, outperforming CNN
(93.8 %), LSTM (95. 1 %), GRU (96. 4 %), and SVM (89. 6 %). This demonstrated the model's superior
ability to detect both normal and faulty operational states. Additionally, the suggested model
outperformed GRU (95.5%), LSTM (94.2%), CNN (92.5%), and SVM (87.8%) with the highest
precision of 98%. 1 % demonstrating its superior ability to reduce false positives through improved
feature extraction, which is shown in Figure 7. The suggested model also outperformed GRU (94. 7 %),
LSTM (93. 5 %), CNN (91. 2 %), and SVM (88. 1 %), with the highest recall of 98. 5 %, demonstrating
its capacity to detect true positive cases and reduce false negatives even in noisy environments. By
outperforming GRU (95.1%), LSTM (93.8%), CNN (91.8%), and SVM (88.0%), the proposed model's
F1-score is 98. 3 % demonstrated a balanced combination of precision and recall, demonstrating the
efficacy of its multi-head attention mechanism in identifying intricate fault patterns.

By giving input features contribution values—something CNN LSTM GRU and SVM were unable to
do—the suggested model also demonstrated its ability to offer interpretable insights into model decision-
making achieving an SHAP explanation fidelity of 88. 0 %. Through the identification of anomaly causes
the SHAP-based interpretability improved operator trust and enabled targeted maintenance decisions.
The Transformer-based model performed better because it was able to focus on important signal
components and use self-attention to capture both local and global dependencies. This allowed the model
to detect faults more accurately and provide greater transparency in industrial applications.
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Figure 7. Comparative analysis of the proposed model

It is possible to attribute the excellent results of the proposed model to its Transformer-based attention
mechanism, which is an effective way to capture the long-range dependence in time-series vibration
data. It is important to note that the ability is essential in detecting subtle fault patterns as compared to
CNNs and RNNs that have limitations in detecting sequential dependencies and large amounts of labeled
data. Moreover, incorporation of SHAP-based interpretability will make it transparent, which will create
trust between maintenance professionals. The preprocessing method is the hybrid Wavelet Transform
(WT) and Variational Mode Decomposition (VMD) which boosts better quality of signal and features
of the signal, thus improving fault detection, especially in bearings. The proposed model is more accurate
and less demanding in terms of computation compared to other models, such as CNN, LSTM, GRU, and
SVM.

Though the proposed model is effective, it is limited in a number of ways. To begin with, the
computational complexity of the multi-head attention and multi-layers of the Transformer model
requires enormous resources and can be difficult to implement in real-time to detect anomalies in the
industrial context with a limited number of computational resources. Also, it may not be scalable to real-
time deployment because of the heavy computational requirements of the model, especially when
making inferences. The strength of the model on diverse machines and conditions under which it
operates have not been adequately tested and thus more validation is necessary to achieve
generalizability of the model in different industrial contexts. Lastly, even though SHAP explanations
are more interpretable, they do not always represent a complex relationship, whereas the calculation of
SHAP values on big data may be computationally intensive, which further affects the use of the model
in a real-time context.

CONCLUSION

In terms of accuracy precision recall Fl-score and SHAP-based explanation fidelity the suggested
Transformer-based framework for vibration-based anomaly detection proved to be a state-of-the-art
approach to predictive maintenance in industrial environments. The model self-attention mechanism
enabled it to capture complex temporal dependencies and subtle fault patterns within the vibration
signals leading to a high accuracy of 99. 2 % and a balanced F1-score of 98. 3 %. Both low- and high-
frequency signal components could be extracted more easily thanks to the preprocessing stages
integration of Wavelet Transform and Variational Mode Decomposition (WT-VMD) which also
improved feature quality and model robustness under a range of operating conditions. With an
explanation fidelity of 88. 0 % SHAP-based interpretability offered both local and global insights into
the models decision-making process allowing operators to pinpoint problematic areas and carry out
focused maintenance plans. As evidenced by its superior ability to handle sequential data and intricate
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vibration patterns the suggested model outperformed both conventional machine learning models like
SVM and current deep learning models like CNN LSTM GRU and others across all vital metrics. The
suggested models high precision (98. 1 %) and recall (98. 5 %) guaranteed fewer false positives and
false negatives enhancing automated anomaly detections dependability and credibility. The results
highlight the Transformer-based architectures efficacy in industrial condition monitoring providing
increased operational efficiency transparent fault detection and explainable Al. For real-time predictive
maintenance this study demonstrates the potential of combining sophisticated deep learning methods
with interpretable models laying the groundwork for future investigation and useful implementation in
intricate industrial settings.
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