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SUMMARY 

The concept of monitoring conditions with the help of AI has become a significant aspect of Industry 4.0 

that enhances machine reliability and provides predictive maintenance. However, the models of anomaly 

detection based on deep learning are not readily implemented because of their lack of interpretability. 

The article introduces a novel anomaly detection model of vibration signals using a Transformer and 

augmented with Shapley Additive exPlanations (SHAP) to provide the accountability of the model. To 

improve the power of the model in diverse circumstances, the hybrid approach of Wavelet Transform and 

Variational Mode Decomposition (WT-VMD) preprocessing technique is used to get meaningful time-

frequency features. The proposed model was tested on an industrial vibration dataset, and the accuracy 
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of anomaly detection is 99.2%, and the fidelity of SHAP elucidation is 88%. An experiment that used 50 

industrial maintenance experts as the subjects showed that the level of trust grew by 45 % and the 

decision-making process became 30 times faster using explainable exploratory models than using non-

explainable models. The results illustrate that the Transformer-based method is more effective in 

increasing the detection performance and interpretability, which is required in industrial predictive 

maintenance. This model allows implementing AI in industrial systems by defining fault detection in a 

clear way that facilitates the realization of the maintenance plans and makes it more reliable. The paper 

has demonstrated the potential of the application of deep learning, along with an interpretable model, in 

solving the issue of fault diagnosis and condition monitoring in the complicated industrial environment. 

Key words: anomaly detection, transformer networks, SHAP explainability, vibration signal processing, 

predictive maintenance, bearing fault diagnosis, industrial AI interpretability. 

INTRODUCTION 

Machines just like the components of the human body that work in synchrony, are composed of various 

functional parts that work in collaboration to achieve similar goal. To realize optimum performance, the 

maintenance of machine health is needed which has been enhanced by constant monitoring of sensory 

information of equipment. Similar to the doctors, reliability professionals review this information in 

order to locate signs of component degradation which may require replacement or repair. An important 

and necessary part of the operations maintenance in industry has fundamentally altered since the 

Industrial Revolution. Maintenance is a critical factor in the success of industrial processes and therefore 

machine health directly relies on the maintenance. In general, the faults are categorized into different 

phases by their importance and the performance observed during data analysis. Rolling bearing elements 

are a significant component of most industrial machineries. A bearing only allows the relative motion 

of moving parts to be limited to the desired motion. Bearings apply the load with the help of rolling parts 

such as balls, tapered and straight cylinders, spherical rollers. The different failure modes exhibited by 

roller element bearings can be determined using waveform and spectrum data. The fault of bearings is 

an important question to be answered. Bearings should provide reliable services in terms of their required 

lifetime when specified, transported, stored, installed, lubricated and utilized appropriately.  

Most of these factors are not managed properly and therefore bearings have a lifespan of an average of 

10 percent of the expected lifespan. There are two primary solutions to this problem: the first one is to 

ensure that the bearings are kept in the right position so that they can last long, and the second one is to 

install monitoring devices to detect potential issues in time to prevent an apocalyptic breakdown. 

Condition monitoring is based on data that sensors gather as a machine is in operation. With other 

elements, other types of data are collected and whereas experts can use homogenous data, they can 

enhance accuracy by looking at heterogeneous data. Vibrational data is typically sufficient to make 

informed choices on bearings. This data is analyzed in frequency and time domain depending on the 

requirements. The four basic frequencies of bearing defects of interest are ball pass outer race (BPGO), 

ball pass inner race (BPFI), fundamental train (FTF) and ball spin frequency. The general nature of 

bearing defects can be detected and even predicted by expert systems. When working with acceleration 

in particular, it is often much easier to find early-stage wear when the vibrational data is analyzed in the 

frequency domain. Most of the faults occur in the BPFO and BPFI frequencies. The specialists that are 

in charge of reliability look at the data of the senses through online monitoring systems that are 

developed by industries in order to identify abnormalities and locate problems as they appear. The ideal 

scenario is to forecast an error and prevent failures even before they occur. Systems require large 

amounts of historical information to identify abnormal trends. Human beings have a hard time doing 

this, but with practice it can be practiced, though there is a possibility of human error. Moreover, human 

beings cannot monitor data in hundreds of sensors, especially heterogeneous data. In such cases, 

artificial intelligence is very important as it helps to analyze large volumes of heterogeneous data in real 

time, which will improve fault detection and prediction (Figure 1). 
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Figure 1. Causes of bearing failures in industrial machines 

The integration of the latest artificial intelligence methods has made it possible to improve prognostics 

and health management (PHM) capabilities within the framework of Industrial Cyber-Physical Systems 

(ICPS) [1]. All the deep learning networks to be discussed as solutions in ICPS fault diagnosis and 

predictive analysis include Autoencoders, Deep Belief Networks, Convolutional Neural Networks 

(CNNs), Recurrent Neural Networks (RNNs), Knowledge Graphs, Graph Neural Networks (GNNs) and 

Transformers [2][3]. All the models possess their peculiar opportunities and difficulties [4]. 

Autoencoders are appreciated due to their capability to operate without labeling and could be optimized 

with the help of different strategies that are easy to implement [5]. Nevertheless, they tend to fail to 

achieve the relevance of complex information and need to undergo pre-training which reduces their 

application on real time applications [6]. Deep Belief Networks can deal with unlabeled data and 

diminish overfitting and underfitting as well as are appropriate to unidimensional data [7]. They 

however, have deficiencies in low training periods and performance constraints in the pre-training period 

[8]. 

The CNNs can be efficient at adaptive feature extractors and may be useful to two dimensional data, but 

large volumes of labeled data and extensive training time are required, so they are not scalable [9][10]. 

Although outstanding in dealing with serial data and predicting time-dependent relationships, RNNs are 

subject to training challenges such as a gradient disappearing and exploding, and stacking of the 

networks is an issue [11]. Knowledge Graphs enhance the data search process and relationship depiction, 

but they fail to provide all the information and have low language understanding [12]. GNNs are also 

interpretable and reasoning, whereas they can operate with complex topologies, but are limited by 

arbitrary size of graphs and computational problems [13].  

Transformers have become popular due to their capability to model long-range dependence and use 

global attention mechanism that can store positional information across sequences [14][18][19]. They 

are very powerful but are highly limited, with computational complexity, sensitivity to length of input 

sequences, which demand very large amounts of data and computational resources [15][16][17]. Even 

though they are quite successful, current Transformer-based methods of identifying anomalies are not 

always interpretable, which means that industrial specialists cannot rely on their results [20]. 

Despite the excellent performance reported by Transformer-based models in different areas, little has 

been done to explainable anomaly detection. Conventional methods do not offer clear information 

regarding model decisions, and it is difficult to win the confidence of operators. Moreover, most 

Transformer-based models are computationally intensive and demand a significant amount of resources 
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to be trained and deployed in real-time, which might not be practicable in an industrial setting with 

resource limits. 

In order to overcome these shortcomings, this paper presents a Transformer-based anomaly detection 

architecture, which incorporates SHapley Additive exPlanations (SHAP) as a model interpretability 

framework. The proposed method does not only increase the accuracy of the anomaly detection, but also 

gives a local and global understanding of the model decision-making, which generates transparency and 

trust. The proposed method results in the efficient extraction of features in its presence by employing a 

hybrid Wavelet Transform and Variational Mode Decomposition (WT-VMD) algorithm which 

guarantees the method to be reliable in different operation conditions. This performance and 

explainability combination fills the key gaps in the existing Transformer-based models of anomaly 

detection and makes the framework more feasible to use in industries. 

Key Contribution 

• Presents a Transformer-based vibration signal-based anomaly detection model in industrial 

systems and uses attention mechanisms to improve its performance. 

• Uses SHapley Additive exPlanations (SHAP) to offer local and global explainability, enhancing 

model openness and trust between maintenance experts in the industrial environment. 

• Integrates a Wavelet Transform and Variational Mode Decomposition (WT-VMD) preprocessing 

algorithm that can be effectively used to extract vibration signal features in a robust way, which 

is reliable in diverse working conditions. 

• Achieves an anomaly detection accuracy of 99.2% and an explanation fidelity of SHAP of 88%, 

showing that the model is practical and reliable in the actual industrial setting. 

• Performs a user experiment with a 45 % increase in trust and a 30 % reduction in time to make a 

decision over non-explainable baseline models demonstrating the practicality of explainability in 

predictive maintenance.  

The paper is structured in the following way: Section 1 presents the research problem of anomaly 

detection in industrial systems based on vibration and mentions the necessity of interpretability in the 

AI models. Section 2 used the methodology that covered the data collection, preprocessing with WT-

VMD, feature extraction, and the Transformer-based model with SHAP to achieve interpretability. 

Section 3 will provide the results, which will consist of the performance of the model, contributions of 

the features, and comparison with the existing models. Section 4 gives a conclusion and future directions. 

METHODOLOGY 

Proposed Framework 

The proposed framework (Figure 2) of vibration-based anomaly detection in industrial machinery 

comprises five steps, namely: acquire data preprocess it extract features use a Transformer-based model 

to detect anomalies and use SHAP to interpret the results. It is the Transformer-based attention that 

enhances the ability of the models to detect complex patterns and the hybrid Wavelet Transform (WT) 

and Variational Mode Decomposition (VMD) method ensures dependable features extraction. Increase 

in interpretability and trust make SHAP-based explanations to be more quick and intelligent in making 

decisions.  
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Figure 2. Architecture of the proposed framework 

Data Collection and Preprocessing 

The study made use of openly accessible industrial vibration datasets that included time-series data 

collected from different machine parts such as motors shafts and bearings which is shown in table 1. To 

ensure a balanced representation of various anomaly patterns the datasets included both normal and 

faulty operational states. Using a hybrid Wavelet Transform and Variational Mode Decomposition (WT-

VMD) technique the raw vibration signals were preprocessed.  

Table 1. Descript of data collection 

Stage Description Purpose 

Data Source 
Publicly available industrial vibration 

datasets 

To ensure access to diverse and 

realistic operational data 

Data Type 
Time-series data from machine 

components (bearings, shafts, motors) 

To capture temporal variations 

and operational states 

Operational States Normal and faulty states 

To provide a balanced 

representation of anomaly 

patterns 

Preprocessing 

Technique 

Hybrid Wavelet Transform and 

Variational Mode Decomposition (WT-

VMD) 

To enhance signal clarity and 

feature extraction 

Wavelet Transform 
Decomposes signals into different 

frequency bands 

To identify transient and non-

stationary characteristics 

Variational Mode 

Decomposition 

Separates signals into intrinsic mode 

functions (IMFs) 

To reduce noise and improve 

feature accuracy 
 

Wavelet Transform (WT) 

By splitting the vibration signals into distinct frequency bands using the Wavelet Transform (WT) it was 

possible to identify the signals transient and non-stationary features. In contrast to the Fourier Transform 

which solely examines signals in the frequency domain WT offers a time-frequency representation 

making it possible to spot abrupt shifts in signal patterns that could be signs of early-stage issues. WT 

uses wavelets which are scaled and translated versions of a mother wavelet as a collection of basic 

functions (figure 3). This makes WT very effective at identifying localized anomalies like bearing cracks 

and misalignments because it can record both short-duration and long-duration signal variations. The 

energy distribution of the signal across various frequency bands is represented by the coefficients that 

are produced by the decomposition and are then examined for fault diagnosis and identification.  
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Figure 3. Wavelet transform (WT) 

Variational Mode Decomposition (VMD) 

A predetermined number of intrinsic mode functions (IMFs) which represent the various oscillatory 

modes contained in the signal were obtained by further decomposing the signals using VMD. Using a 

limited variational framework VMD adaptively divides the signal into modes with particular frequency 

content. As a result mode mixing and signal distortion are reduced during the extraction process. Signal 

clarity and noise reduction are improved by VMDs capacity to isolate discrete frequency components 

while maintaining the integrity of the original signal. By ensuring that both low-frequency and high-

frequency components are efficiently captured WT and VMD work together to improve fault detection 

accuracy and dependability. A thorough understanding of the signals time-frequency properties is 

provided by the combination of VMD and WT which increases the models sensitivity to early-stage 

flaws.  

Feature Extraction 

In order to create a rich feature set for model training significant statistical and spectral features were 

taken out of the decomposed signals after the preprocessing stage. Mean variance skewness and kurtosis 

were time-domain characteristics that shed light on the signals amplitude and distribution. Kurtosis 

denotes the presence of sharp peaks in the signal which are frequently associated with mechanical 

impacts variance indicates the degree of signal fluctuation skewness measures the asymmetry of the 

signal distribution and mean denotes the signals central tendency. Peak frequency bandwidth and power 

spectral density were examples of frequency-domain characteristics that captured the distribution of 

signal energy and the main frequency components. To measure the complexity and irregularity of the 

vibration signals entropy-based features like permutation entropy and Shannon entropy were also 

calculated. Chaotic signal behavior which can be a sign of structural instability or mechanical wear is 

frequently associated with high entropy values. To prevent bias during model training and enhance 

learning convergence the extracted features were normalized to a consistent scale using z-score 

normalization. By using a thorough feature extraction approach the model was able to precisely 

distinguish between normal and defective states by capturing both time-dependent and frequency-

dependent signal characteristics.  

Transformer-Based Attention Model 

By using the self-attention mechanism to capture intricate temporal dependencies in the vibration data a 

Transformer-based attention model was created for anomaly detection. Several encoder layers made up 

the Transformer models architecture and each encoder processed the input sequence by going through a 

number of crucial elements. To capture interdependencies between various time steps within the 
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vibration signals the Multi-Head Self-Attention (MHSA) mechanism which is the central component of 

the model computes attention scores across the input sequence. The self-attention mechanism has the 

following mathematical definition in equation 1.  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉                                                                                            (1) 

where Q, K, and V represent the query, key, and value matrices, respectively, and dkd_kdk is the 

dimension of the key.  

The output from the multi-head attention block is passed through a Feedforward Neural Network (FFN), 

which introduces non-linearity to the model and improves feature representation. The FFN can be 

defined as equation 2: 

𝐹𝐹𝑁(𝑥) = 𝑚𝑎𝑥(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2                                                                                           (2) 

where x is the input feature vector, W1 and W2 are weight matrices, and b1 and b2 are bias terms. Layer 

normalization and dropout were applied after the attention and feedforward blocks to improve training 

stability and reduce overfitting.  

SHAP-Based Model Interpretability 

To provide both local and global interpretability of the models decisions SHapley Additive exPlanations 

(SHAP) was incorporated into the Transformer-based anomaly detection model. A unified framework 

for analyzing the results of cooperative game-theory-based machine learning models is called SHAP. It 

quantifies the influence of each input feature on the models predictions by assigning contribution values 

to each one. SHAP provides a consistent and equitable explanation of the models behavior by ensuring 

that the sum of the feature contributions equals the discrepancy between the actual prediction and the 

expected model output. This enhances model transparency and builds confidence among maintenance 

professionals by making it possible to identify the crucial features that are in charge of the anomaly 

classification.  

The SHAP value for a specific feature xix_ixi in a model prediction f(x)f(x)f(x) is computed as follows 

equation 3: 

∅𝑖(𝑓) =  ∑
∣S∣|!(|F|−|S|−1)!

|𝐹|!
 [𝑓(𝑆𝑈{𝑖}) − 𝑓(𝑆)]𝑆⊆𝐹\{𝑖}                                                                         (3) 

where: 

• ϕi(f) = SHAP value for feature xix_ixi 

• F = Set of all features 

• S = Subset of features excluding iii 

• f(S) = Model prediction using the feature set SSS 

• ∣S∣| = Number of elements in subset SSS 

• ∣F∣ = Total number of features 

SHAP-based insights provided several advantages in improving model transparency and increasing trust 

among industrial maintenance professionals: 

1. Determination of Critical Features: SHAP determined that the frequency-domain features (e.g. 

peak frequency, bandwidth) were more important in the model predictions compared to the time-
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domain features. 

2. Early-stage Faults Detection: The high SHAP values of kurtosis and skewness in samples of 

early-stage anomalies showed that these two characteristics were sensitive to mechanical wear 

and imbalance. 

3. Model Debugging: SHAP values were used to identify faulty model behavior by identifying 

discrepancies in the feature contribution behavior of similar test samples. 

4. Better Decision-Making A 50-participant user study in industrial maintenance showed that, on 

SHAP-based explanation baselines, there was a 45% higher trust and a 30% faster decision time 

than no explanation control conditions. 

SHAP made it possible to understand the behavior of the model comprehensively by giving both local 

and global explanations. This further boosted the self-confidence of the maintenance professionals to 

implement the model in the real-time detection of anomalies and efficient maintenance planning. 

RESULTS AND DISCUSSION 

The proposed Transformer-based anomaly detection framework was evaluated using industrial vibration 

datasets comprising time-series data from bearings, shafts, and motors under both normal and faulty 

operational states. Accuracy precision recall F1-score and SHAP explanation fidelity were among the 

evaluation metrics used to gauge the frameworks performance. The extracted time-domain and 

frequency-domain features were also thoroughly examined to determine how well they contributed to 

anomaly classification.  

The proposed model was run on Python 3.8 as the programming language; deep learning model 

development was carried out using TensorFlow 2.6 and Keras 2.6. NumPy 1.21, Pandas 1.3, Matplotlib 

3.4, and SHAP 0.39 have been used as other libraries to manipulate, visualize, and explain the models. 

It was implemented on an Ubuntu 20.04 LTS operating system and used an NVIDIA RTX 3090 based 

in computation-intensive tasks. 

To test the proposed anomaly detection model, the study employed a publicly available dataset of 

industrial vibration time series from different machine parts, including bearings, motors, and shafts. The 

data set has 10,000 samples of time-series (1024 data points) and a rate of 1 kHz. The data is divided 

into training, validation and test data with 70 % of the data being used in the training process, 15 % in 

the validation process and 15 % in testing. This equal representation provides that both normal and faulty 

working conditions are sufficiently represented to perform tasks of detecting anomalies. 

The performance of the proposed model was evaluated using the following standard metrics: 

Accuracy: Equation 4 is used to measure the general accuracy of the model predictions. It is determined 

to be a ratio of correct predictions to total number of predictions. 

Accuracy =
TP+TN

TP+TN+FP+FN
                                                                                                                     (4) 

Where, TP= True Positives, TN= True Negatives, FP= False Positives and, FN= False Negatives 

Precision: Precision (Equation 5) is the percentage of correct predictions that are made which shows 

how the model is able to determine positive cases. 

Precision =
TP

TP+FP
                                                                                                                                (5) 

Recall (Sensitivity): Equation 6 is the percentage of successful identifications of all positive cases by 

the model. 
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Recall =
TP

TP+FN
                                                                                                                                    (6) 

F1-Score: Equation 7 is the harmonic mean of precision and recall which offers a balanced measure 

where there is an imbalanced class distribution (i.e., when the cost of false positives and false negatives 

are different). 

F1-Score = 2 ×
Precision×Recall

Precision+Recall
                                                                                                                 (7) 

SHAP Explanation Fidelity: SHAP explanation fidelity is used to see whether the SHAP values (that 

explain the predictions of the model) are accurate predictors of the actual decision-making process of 

the model. It is generally measured by the contribution of the input features used in the decision of the 

model to the corresponding SHAP values are shown in equation 8. 

SHAP Fidelity = 1 −
∑ ∣SHAP𝑖−Contribution𝑖∣𝑛

𝑖=1

∑ ∣Contribution𝑖∣𝑛
𝑖=1

                                                                                        (8) 

Where, SHAP𝑖= SHAP value for feature 𝑖 and Contribution𝑖= Model's contribution for feature 𝑖. 

Model Performance Across Different Dataset Splits 

The generalization ability and robustness of the model were assessed through the use of five distinct 

dataset splits. The accuracy precision recall F1-score and SHAP explanation fidelity attained for each 

split are shown in Table 2 and figure 4.  

Table 2. Model performance across different dataset splits 

Dataset 

Split 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

SHAP Explanation 

Fidelity (%) 

Split 1 98.6 96.2 97.8 97 87.5 

Split 2 99.1 97.8 98.2 98 88.3 

Split 3 99.2 98.1 98.5 98.3 88 

Split 4 98.8 97.4 98 97.7 87.7 

Split 5 99 98 98.4 98.2 88.1 
 

 

In every dataset split the suggested model performed consistently and well. Split 1 had the lowest 

accuracy of 98. 6 % while Split 3 had the highest accuracy of 99. 2 %. The models efficacy in lowering 

false positives was demonstrated by the consistently high precision values with Split 3 obtaining the 

highest value at 98. 1%. The model's ability to accurately detect true positives was confirmed by recall 

values ranging from 97.8% to 98.5%. The F1-score which measures how well recall and precision are 

balanced reached its highest point in Split 3 at 98. 3%. Split 2 saw the highest SHAP explanation fidelity 

which gauges how well the SHAP values match the models decision-making process at 88. 3 %. This 

suggests that consistent and trustworthy insights into the models decision-making process were offered 

by the SHAP-based interpretability approach.  

 

Figure 4.  Model performance across different dataset splits 
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Feature Contribution Based on SHAP Values 

To ascertain each features contribution to the models decision-making process SHAP values were 

combined. The range of values for important features standard deviation and mean SHAP values are 

shown in Table 3 and figure 5. 0. 245 was the highest mean SHAP value observed in peak frequency 

with a minimum of 0. 210 and a maximum of 0. 278.  

Table 3. Feature contribution based on SHAP values 

Feature Mean SHAP Value Standard Deviation Minimum Maximum 

Peak Frequency 0.245 0.023 0.21 0.278 

Kurtosis 0.188 0.015 0.164 0.202 

Skewness 0.176 0.018 0.155 0.192 

Power Spectral Density 0.232 0.02 0.211 0.256 

Entropy 0.205 0.017 0.185 0.225 
 

This suggests that peak frequency had the greatest overall impact on the choices made by the model. 

Additionally the power spectral density had a significant mean SHAP value of 0. 232 with a range of 0. 

211 to 0. 256. In terms of the models performance kurtosis and entropy both made moderate 

contributions with mean SHAP values of 0. 188 and 0. 205 respectively. Skewness had the least effect 

on model predictions as evidenced by its lowest mean SHAP value of 0. 176. However the models 

consistent decision-making process is reflected in the comparatively low standard deviation across all 

features.  

 

Figure 5. Feature contribution based on SHAP values 

Performance of Preprocessing Techniques 

The effectiveness of the hybrid Wavelet Transform and Variational Mode Decomposition (WT-VMD) 

preprocessing technique was evaluated in terms of signal-to-noise ratio (SNR), noise reduction, and 

computational time. Table 4 and figure 6 presents the results. 

Table 4. Performance of preprocessing techniques 

Technique Signal-to-Noise Ratio (SNR) (dB) Noise Reduction (%) Computational Time (s) 

WT 24.1 42.5 1.45 

VMD 26.3 47.8 2.01 

WT + VMD 30.4 53.2 2.89 
 

The hybrid WT-VMD approach produced the highest SNR of 30.4 dB and the highest noise reduction 

of 53.2%. The computational time for the hybrid technique was 2.89 s, which was higher than the 

individual WT and VMD approaches. Despite the increase in processing time, the superior SNR and 

noise reduction demonstrated the effectiveness of the combined preprocessing technique. 
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Figure 6. Performance of preprocessing techniques 

 

Comparison of the Proposed Transformer-Based Model with Existing Models 

To evaluate the effectiveness of the proposed Transformer-based anomaly detection framework, its 

performance was compared against existing state-of-the-art models, including Convolutional Neural 

Networks (CNN), Long Short-Term Memory Networks (LSTM), Gated Recurrent Units (GRU), and 

Support Vector Machines (SVM). The comparison focused on key performance metrics such as 

accuracy, precision, recall, F1-score, and SHAP explanation fidelity. The results are presented in Table 

5. 

Table 5. Comparative analysis of the proposed model with existing models 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

SHAP Explanation 

Fidelity (%) 

CNN 93.8 92.5 91.2 91.8 – 

LSTM 95.1 94.2 93.5 93.8 – 

GRU 96.4 95.5 94.7 95.1 – 

SVM 89.6 87.8 88.1 88 – 

Proposed 

Model 
99.2 98.1 98.5 98.3 88 

Its self-attention mechanism, which successfully captured long-range dependencies and temporal 

patterns, allowed the proposed model to achieve the highest accuracy of 99. 2 %, outperforming CNN 

(93. 8 %), LSTM (95. 1 %), GRU (96. 4 %), and SVM (89. 6 %). This demonstrated the model's superior 

ability to detect both normal and faulty operational states. Additionally, the suggested model 

outperformed GRU (95.5%), LSTM (94.2%), CNN (92.5%), and SVM (87.8%) with the highest 

precision of 98%. 1 % demonstrating its superior ability to reduce false positives through improved 

feature extraction, which is shown in Figure 7. The suggested model also outperformed GRU (94. 7 %), 

LSTM (93. 5 %), CNN (91. 2 %), and SVM (88. 1 %), with the highest recall of 98. 5 %, demonstrating 

its capacity to detect true positive cases and reduce false negatives even in noisy environments. By 

outperforming GRU (95.1%), LSTM (93.8%), CNN (91.8%), and SVM (88.0%), the proposed model's 

F1-score is 98. 3 % demonstrated a balanced combination of precision and recall, demonstrating the 

efficacy of its multi-head attention mechanism in identifying intricate fault patterns.  

By giving input features contribution values—something CNN LSTM GRU and SVM were unable to 

do—the suggested model also demonstrated its ability to offer interpretable insights into model decision-

making achieving an SHAP explanation fidelity of 88. 0 %. Through the identification of anomaly causes 

the SHAP-based interpretability improved operator trust and enabled targeted maintenance decisions. 

The Transformer-based model performed better because it was able to focus on important signal 

components and use self-attention to capture both local and global dependencies. This allowed the model 

to detect faults more accurately and provide greater transparency in industrial applications.  
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Figure 7. Comparative analysis of the proposed model 

It is possible to attribute the excellent results of the proposed model to its Transformer-based attention 

mechanism, which is an effective way to capture the long-range dependence in time-series vibration 

data. It is important to note that the ability is essential in detecting subtle fault patterns as compared to 

CNNs and RNNs that have limitations in detecting sequential dependencies and large amounts of labeled 

data. Moreover, incorporation of SHAP-based interpretability will make it transparent, which will create 

trust between maintenance professionals. The preprocessing method is the hybrid Wavelet Transform 

(WT) and Variational Mode Decomposition (VMD) which boosts better quality of signal and features 

of the signal, thus improving fault detection, especially in bearings. The proposed model is more accurate 

and less demanding in terms of computation compared to other models, such as CNN, LSTM, GRU, and 

SVM. 

Though the proposed model is effective, it is limited in a number of ways. To begin with, the 

computational complexity of the multi-head attention and multi-layers of the Transformer model 

requires enormous resources and can be difficult to implement in real-time to detect anomalies in the 

industrial context with a limited number of computational resources. Also, it may not be scalable to real-

time deployment because of the heavy computational requirements of the model, especially when 

making inferences. The strength of the model on diverse machines and conditions under which it 

operates have not been adequately tested and thus more validation is necessary to achieve 

generalizability of the model in different industrial contexts. Lastly, even though SHAP explanations 

are more interpretable, they do not always represent a complex relationship, whereas the calculation of 

SHAP values on big data may be computationally intensive, which further affects the use of the model 

in a real-time context. 

CONCLUSION 

In terms of accuracy precision recall F1-score and SHAP-based explanation fidelity the suggested 

Transformer-based framework for vibration-based anomaly detection proved to be a state-of-the-art 

approach to predictive maintenance in industrial environments. The model self-attention mechanism 

enabled it to capture complex temporal dependencies and subtle fault patterns within the vibration 

signals leading to a high accuracy of 99. 2 % and a balanced F1-score of 98. 3 %. Both low- and high-

frequency signal components could be extracted more easily thanks to the preprocessing stages 

integration of Wavelet Transform and Variational Mode Decomposition (WT-VMD) which also 

improved feature quality and model robustness under a range of operating conditions. With an 

explanation fidelity of 88. 0 % SHAP-based interpretability offered both local and global insights into 

the models decision-making process allowing operators to pinpoint problematic areas and carry out 

focused maintenance plans. As evidenced by its superior ability to handle sequential data and intricate 
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vibration patterns the suggested model outperformed both conventional machine learning models like 

SVM and current deep learning models like CNN LSTM GRU and others across all vital metrics. The 

suggested models high precision (98. 1 %) and recall (98. 5 %) guaranteed fewer false positives and 

false negatives enhancing automated anomaly detections dependability and credibility. The results 

highlight the Transformer-based architectures efficacy in industrial condition monitoring providing 

increased operational efficiency transparent fault detection and explainable AI. For real-time predictive 

maintenance this study demonstrates the potential of combining sophisticated deep learning methods 

with interpretable models laying the groundwork for future investigation and useful implementation in 

intricate industrial settings.  
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