
Dr. Anupa Sinha, et al: Soft wearable ……  Archives for Technical Sciences 2025, 34(4), 717-731 

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34           717 

ISSN 1840-4855 

e-ISSN 2233-0046 

Original scientific article 

http://dx.doi.org/10.70102/afts.2025.1834.717 

 

SOFT WEARABLE TRIBOELECTRIC SENSORS FOR 

CONTINUOUS CARDIOVASCULAR MONITORING 

AND ANOMALY PREDICTION 

Dr. Anupa Sinha1*, Moti Ranjan Tandi2 
 

1*Assistant Professor, Kalinga University, Naya Raipur, Chhattisgarh, India.  

e-mail: ku.anupasinha@kalingauniversity.ac.in, orcid: https://orcid.org/0009-0009-

4725-7923 
2Assistant Professor, Kalinga University, Naya Raipur, Chhattisgarh, India. 

e-mail: motiranjantandi@kalingauniversity.ac.in, orcid: https://orcid.org/0009-0001-

0346-1203 

Received: September 16, 2025; Revised: October 27, 2025; Accepted: December 01, 2025; Published: December 30, 2025 

SUMMARY 

Advancements in technology have increased demand for systems that continuously monitor the 

cardiovascular system in a non-invasive, energy-efficient way. Wearable sensors, in their current form, 

have many drawbacks: they require external power sources and are made of rigid components. This can 

impact the user experience, the system, the sensor's ability to perform real-time health assessments, and 

the ability to perform multiple evaluations over time. This paper investigates the use of a soft, adjustable 

sensing system based on triboelectric nanogenerator (TENG) technology for the assessment of 

cardiovascular signals and predictive analysis of anomalies. Proposed systems use synthesized 

biomechanical energy from user movements to power themselves, eliminating the need for external power 

sources. Sophisticated signal analysis and processing are utilized to measure and monitor cardiovascular 

parameters, which in this case are derived from triboelectric signals and measure/monitor heart rate 

variability, waveforms, and the rate/characteristics of blood flow. Additionally, a machine learning 

predictive model is incorporated to analyze and monitor patterns and assess for anomalies in the user's 

cardiovascular system, identifying those most at risk for cardiac disease. Simulations and experiments 

indicate that the proposed system outperforms existing systems in predictive signal analysis and 

monitoring. Based on the evidence, the proposed system allows for a 35% reduction in external power 

supply and a 22% increase in predictive analysis of system alarms. Over time, the proposed system can 

be deployed in a real-world setting. The system's flexible design allows the user to capture signals from 

their physiological systems without discomfort. By integrating self-powered sensing with intelligent 

analytics and soft electronics, this research offers a novel and adaptable solution for next-generation 

wearable health care systems. The proposed framework contributes to innovative interdisciplinary 

research in wearable technology and applied biomedical engineering, with particular emphasis on remote 

patient monitoring, preventive health care, and innovative medical systems.  

Key words: soft wearable sensors, self-powered sensing, TENG, cardiovascular monitoring, anomaly 

prediction, machine learning, wearable health care system. 
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INTRODUCTION 

Wearable technologies enable real-time monitoring and assessment of physiological signals, supporting 

personalized and preventive healthcare. Continuous cardiovascular monitoring is especially important 

for early disease detection, chronic condition management, and long-term health evaluation [1]. 

However, conventional systems rely on rigid electronics, intermittent measurements, and battery-

dependent designs, limiting long-term usability and real-time analytics. Advances in soft electronics and 

nanomaterials have enabled flexible, body-conformable sensors [2]. Among these, triboelectric 

nanogenerators (TENGs) are particularly promising due to their ability to convert biomechanical energy 

into electrical signals through contact electrification and electrostatic induction, enabling self-powered 

operation without external energy sources [3]. Their high sensitivity to subtle physiological motions, 

including pulse and blood-flow-induced skin deformation, makes them well-suited for cardiovascular 

applications [4]. Integration of soft triboelectric sensors allows continuous acquisition of rich 

cardiovascular signals during daily activities, providing information on heart rate variability, pulse 

morphology, and vascular dynamics [5]. 

Despite these benefits, triboelectric signals are often nonlinear, motion-sensitive, and influenced by 

environmental and individual variability, necessitating advanced signal processing and intelligent data-

driven models for reliable interpretation [6]. Machine learning–based anomaly prediction further enables 

automated detection of abnormal cardiovascular events such as arrhythmias and early dysfunction, 

transforming wearable systems from passive monitors into proactive healthcare tools [7]. Nevertheless, 

challenges including sensor placement variability, mechanical durability, and large volumes of time-

series data remain [10]. Traditional threshold-based approaches lack adaptability across users, 

highlighting the need for integrated frameworks that combine soft sensor design, adaptive analytics, and 

real-time prediction [8]. Such interdisciplinary systems support continuous operation, scalable 

deployment, and practical healthcare integration, bridging the gap between theoretical sensing 

technologies and real-world clinical applications [9]. 

 

Figure 1. Soft wearable triboelectric cardiovascular monitoring system architecture 

Figure 1 shows a potential design for a soft, wearable triboelectric sensor in contact with the human 

body, intended for continuous cardiovascular monitoring. Cardiac activity and blood flow create 

biomechanical movements that cause triboelectric charge transfer and signal generation, which are 

processed via signal conditioning and machine learning for real-time anomaly detection. 
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Problem Statement 

Despite advancements in wearable cardiovascular monitoring, many systems still depend on battery-

powered sensors and rigid electronics, limiting long-term comfort and continuous operation [11]. 

Existing studies either focus on triboelectric sensor fabrication without integrating intelligent analytics 

or apply machine learning to conventional sensors assuming stable, noise-free signals, overlooking the 

nonlinear and motion-sensitive behavior of triboelectric outputs under real-world conditions [12]. 

Moreover, the lack of a unified framework that combines self-powered sensing with adaptive anomaly 

prediction reduces reliability across varying users and environments. To address these limitations, this 

work proposes an integrated soft wearable triboelectric sensing and intelligent prediction framework for 

reliable, continuous, and energy-efficient cardiovascular monitoring [13].   

Research Objectives 

Developing an intelligent, self-powered, wearable system for continuous cardiovascular monitoring and 

anomaly prediction is the main aim of this research. The specific goals include:  

• Designing a soft, comfortable, wearable triboelectric sensor that is able to continuously record 

the biomechanical signals induced by cardiovascular activity. 

• Designing signal processing frameworks to build techniques for relevant cardiovascular feature 

extraction from triboelectric sensor outputs. 

• Deploying machine learning models for real-time cardiovascular system anomaly detection and 

prediction. 

• Evaluation of the system using simulations and experimental analysis and benchmarking against 

conventional wearable monitoring systems. 

Contributions 

This research offers the following primary contributions: 

• The self-powered and continuous acquisition of cardiovascular signals does not require external 

power sources. This is made possible through the design of a soft wearable triboelectric sensor 

and the novel sensor system's architecture. 

• The development of a framework that integrates machine learning and signal processing to 

predict anomalies and identify cardiovascular signals under varying and/or complex conditions. 

• Regarding monitoring, compared to most conventional systems, the proposed system offers 

improved long-term applicability in wearable healthcare systems and enhanced anomaly 

detection. 

• The study offers an interdisciplinary solution, integrating material science, biomedical 

engineering, and smart data analytics, which is scalable for the future of health monitoring 

wearables. 

The rest of the paper will be structured as follows. Section 2 examines prior investigations pertaining to 

the integration of wearable cardiovascular sensors and triboelectric nanogenerators within smart health 

monitoring systems. In Section 3, the proposed system architecture is detailed, followed by the design 

of the sensor, methods for signal processing, and models for anomaly prediction. Section 4 focuses on 

the system setup and the appraisal of its performance. The results and discussion are presented in Section 

5. Section 6 concludes with the summary of the primary contributions and potential directions for future 

research. 

LITERATURE REVIEW 

The advancement of wearable health technologies has revolutionized real-time physiological 

monitoring, particularly for cardiovascular health. With the increasing prevalence of cardiovascular 

diseases, there is a growing need for wearable systems that are adaptable, sustainable, and capable of 

long-term use [14]. Soft wearable sensors, especially those utilizing triboelectric nanogenerators 
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(TENGs), have emerged as promising solutions due to their ability to convert biomechanical energy into 

electrical signals without external power sources [15]. These sensors can continuously monitor 

physiological signals like pulse and heartbeats, making them ideal for cardiovascular applications [16]. 

Despite these advancements, many soft wearable sensors still rely on traditional power sources and 

signal conditioning, limiting their scalability and long-term functionality. TENGs offer a self-powered 

alternative, but challenges remain in signal processing and feature extraction. Triboelectric signals are 

nonlinear and prone to motion artifacts, necessitating advanced signal conditioning techniques [17]. 

While machine learning models, such as CNNs and LSTM architectures, have shown promise in 

analyzing ECG and PPG data, their application to triboelectric signals is still underdeveloped, especially 

for real-time anomaly detection [18]. 

Future research must address the integration of self-powered triboelectric sensors with intelligent 

analytics to enhance continuous cardiovascular monitoring [19]. Current systems often focus separately 

on sensor design, data collection, and anomaly detection, neglecting the holistic integration needed for 

real-world application [20]. There is significant potential in developing frameworks that combine 

advanced signal processing and adaptive machine learning to improve reliability and accuracy. Such 

integrated systems will pave the way for more effective and reliable wearable health monitoring, 

ultimately advancing personalized medicine and preventive healthcare. 

PROPOSED METHOD 

This segment outlines the methodology for the continuous cardiovascular monitoring framework 

utilizing soft wearable triboelectric sensors paired with smart anomaly prediction. The methodology 

integrates self-powered triboelectric sensing with signal conditioning, feature extraction, and machine 

learning for dependable and sustainable cardiovascular health monitoring. The proposed methodology 

is designed to address real-world challenges such as variability in motion, nonlinear signals, and 

differences in cardiovascular parameters among individuals. 

Triboelectric Sensing Principle  

Triboelectric sensors are able to produce electrical signals from energy that is produced by body 

movement. These electrical stimuli are caused by simultaneous contact electrification along with 

electrostatic induction. 

When two materials with different triboelectric polarities come into periodic contact and separate, there 

is one surface that yields electrons, and there is one surface that accepts electrons, causing a build-up of 

states with opposite charges on each material. In soft wearables, this is triggered by the deformation of 

the skin caused by the cardiovascular system due to pulsation, the vibration of the heart, and the 

movement of blood. 

With each contact-separation cycle, the friction layers move relative to each other, causing a change in 

the magnetic field over time, which yields a measurable voltage across the electrodes. The voltage 

generated by the triboelectric effect can be defined using this equation: 

V(t) =
σ(t)⋅d(t)

∈𝑜.∈𝑟
                                                                                                                                                          (1) 

where in equation (1) σ(t) is the surface charge density generated due to the biomechanical movement, 

d(t) is the distance of separation between the friction layers caused by the deformation of the pulse, ε0 

is the permittivity of air, and εr is the permittivity of the dielectric material. 

The accuracy of pulse waveform extraction is attributable to the strong relationship between the 

cardiovascular system and the magnitude and time changes of V(t). Since the proposed mechanism does 

not requires external power, cardiovascular monitoring can be done continuously and self-powered, 

which is most suitable for long-term use in the healthcare field. 
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Signal Conditioning and Feature Extraction  

Although triboelectric sensors can detect and respond to various forms of biomechanical movement, 

their raw output tends to respond to movement artifacts, baseline shifts, and nonlinear response 

tendencies. A multi-module signal conditioning process is used to enable unambiguous interpretation of 

critical signals from the cardiovascular system. 

Noise Filtering 

Before the vital cardiovascular signals are captured, a digital band-pass filter with a 0.5-5Hz frequency 

is used to remove low and high frequency drift, which are not associated with cardiovascular signals. 

Normalization 

In order to eliminate discrepancies owing to sensor placement, an individual’s physiology, and varying 

skin characteristics, normalization to the mean of the pulse is performed. This ensures uniformity in the 

attributes of the pulse being examined. 

Segmentation 

Through the use of the adaptive peak detection method, individual cycles of the pulse are captured, and 

a pulse cycle analysis is done. This aids in the extraction of the features that are temporally consistent. 

Automated peak detection aids in the identification of individual pulse cycles, from which the following 

cardiovascular characteristics are extracted: 

• Heart Rate (HR): Number of pulse peaks per minute 

• Pulse Amplitude (PA): Peak-to-peak voltage variation 

• Pulse Interval (PI): Time duration between successive pulses 

• Pulse Wave Velocity Proxy (PWV*): Estimated arterial stiffness indicator 

• Heart Rate Variability (HRV): Temporal fluctuation in pulse intervals 

The extracted features are aggregated into a unified feature vector: 

F = [HR, PA, PI, HRV, PWV]                                                                                                                       (2) 

Equation (2) defines the construction of a unified feature vector, F= [HR, PA, PI, HRV, PWV], by 

aggregating the extracted cardiovascular features. This representation encapsulates both morphological 

aspects, such as pulse amplitude (PA) and perfusion index (PI), and temporal dynamics, including heart 

rate (HR), heart rate variability (HRV), and pulse wave velocity (PWV). By combining these 

complementary features, the vector provides a comprehensive input for intelligent algorithms aimed at 

detecting cardiovascular anomalies. 

Anomaly Prediction Model  

The prediction of cardiovascular anomalies is structured as a sequential decision-learning problem, 

whereby the system is able to learn from and evaluate new physiological data as it arrives. Each time 

instance is matched to a divided pulse cycle, which is detailed in the feature vector. 

State Definition 

𝑆𝑡 =  𝐹𝑡                                                                                                                                                        (3) 
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Equation (3) defines the state of the system, St=Ft, where St represents the cardiovascular state at time 

t based on the feature vector Ft. 

Action Space 

A = {Normal, Anomalous}                                                                                                                       (4) 

Equation (4) defines the action space, A= {Normal, Anomalous}, indicating that the model classifies 

the observed cardiovascular pattern as either normal physiological behaviour or a potential abnormality. 

Reward Function 

𝑅(𝑆𝑡,  𝐴𝑡) = {
+1, Correct classification

−1. Misclassification
                                                                                         (5) 

Equation (5) specifies the reward function, R (St, At), which assigns a value of +1 for correct 

classifications and −1 for misclassifications. This reward system promotes adaptive learning by 

reinforcing accurate predictions while penalizing incorrect ones, guiding the model toward more reliable 

anomaly detection over time. 

A deep learning architecture of choice is guided supervision coupled with Long Short-Term Memory 

(LSTM) networks, or combinations of CNN and LSTM, for capturing the temporal and long-range 

dependencies of the cardiovascular signals. Such models are able to learn the intricate patterns of time 

associated with the variety of cardiac signals, such as arrhythmias, irregular rhythmic pulses, and 

abnormal cardiovascular responses. 

Learning Model Update  

The anomaly prediction model employs temporal backpropagation and loss minimization to update its 

weights and bias, which allows the model to improve its predictions with the arrival of new data. 

Mathematically, the cardiovascular state predicted at time step t is represented as follows. 

𝑦′𝑡 = 𝑓𝑜(𝐹𝑡)                                                                                                                                                 (6) 

Equation (6) defines the prediction model as y^t=fθ(Ft), where fθ(⋅) represents the trained learning 

model parameterized by θ, and y^t is the predicted output at time t based on the input feature vector Ft. 

The loss function is defined as the mean squared error (MSE): 

𝐿 =
1

𝑁
∑ (𝑦′

𝑡 − 𝑦𝑡)
2𝑁

𝑇−1
                                                                                                                         (7) 

Equation (7) defines the loss function using the mean squared error (MSE): 

where yt is the ground-truth label and N denotes the total number of training samples. This loss function 

quantifies the difference between the predicted and actual values, guiding the optimization of model 

parameters to minimize prediction errors. 

Table 1. Parameter initialization 

Parameter Value 

Triboelectric Sensor Parameters Sensitivity: 0.1–0.3 mV/unit of pressure 

Filter Coefficients (Φ) Low Cutoff: 0.5 Hz, High Cutoff: 5 Hz 

Model Weights (θ) Weight initialization: Random (0.01 to 0.05) 
 

The model adapts to the unique physiological characteristics of the individual, the drift of the monitoring 

sensors, and the surrounding environment, as described by the modified loss function. Such a dynamic 
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learning capability greatly explains the identified accuracy of the system with respect to the detection of 

anomalies, the reduction of false alarms, and the reliability to provide the real-time surveillance of 

cardiovascular status in the monitoring systems that are worn for healthcare purposes. 

This Table 1 presents the approximate values for the key parameters initialized in the triboelectric-based 

cardiovascular monitoring system. These values are essential for accurate data acquisition, signal 

processing, and real-time anomaly prediction. 

Algorithm 1: Triboelectric-Based Cardiovascular Monitoring and Anomaly Prediction 

Input: 

    Triboelectric sensor stream S(t) 

    Pre-trained anomaly prediction model M 

    Filter parameters Φ 

    Learning rate α 

Output: 

    Cardiovascular state classification Y(t) 

Begin 

1. Initialization 

    Initialize triboelectric sensor parameters 

    Initialize filtering coefficients Φ 

    Initialize model weights θ of M 

2. While the system is active, do 

    2.1 Signal Acquisition 

        Acquire raw triboelectric signal: 

        X(t) ← ReadSensor(S(t)) 

    2.2 Signal Conditioning 

        Xf(t) ← ApplyBandpassFilter(X(t), Φ) 

        Xn(t) ← Normalize (Xf(t)) 

        Xseg(t) ← SegmentSignal(Xn(t)) 

    2.3 Feature Extraction 

        F(t) ← Extract Features(Xseg(t)) 

        // F(t) = {HR, PA, PI, HRV, PWV} 

    2.4 Anomaly Prediction 
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        Ŷ(t) ← M(F(t)) 

    2.5 Decision Output 

        If Ŷ(t) == "Anomalous" then 

            TriggerAlert() 

        End If 

    2.6 Model Update 

        Compute prediction error: 

        E(t) ← Loss (Ŷ(t), Y(t)) 

        Update model parameters: 

        θ ← θ − α · ∇E(t) 

End While 

End 

The proposed algorithm develops cardiovascular anomaly detection in real-time by acquiring and signal 

conditioning self-powered triboelectric signals, feature extraction, and employing an intelligent learning 

model. For differing physiologic and motion states, the model’s parameters are iteratively adjusted to 

optimize prediction accuracy. 

Assumptions and Notations 

Assumptions 

- Sensors continue to bond conformally with the surface of the skin. 

- Cardiovascular activity is directly proportional to triboelectric output. 

- The machine learning model personalizes to unique physiological differences. 

Notations 

• St: System state at time ttt 

• Ft: Feature vector 

• y^t: Predicted cardiovascular state 

• θ: Model parameters 

Novelty of the Proposed Method 

The novelty of this work lies in: 

1.Autonomous sensing: use of triboelectric energy harvesting techniques for power source elimination. 

2. Flexible soft integration: Improved comfort and increased use duration 



Dr. Anupa Sinha, et al: Soft wearable ……  Archives for Technical Sciences 2025, 34(4), 717-731 

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 34           725 

3. Proactive smart anomaly detection: Adaptive and real-time cardiovascular risk detection 

4.Integrated Framework: consolidation of materials science, signal processing, and machine learning. 

Operational Flowchart of the Soft Wearable Triboelectric Sensor System for Continuous 

Cardiovascular Monitoring 

 

Figure 2. Proposed system workflow for triboelectric cardiovascular monitoring 

Figure 2 presents the proposed method as a continuous pipeline for real-time cardiovascular monitoring 

and anomaly prediction using a soft, wearable triboelectric sensing framework. After system 

initialization, self-powered TENG sensors acquire pulse signals, which are conditioned through 

amplification, filtering, normalization, and segmentation to obtain clean waveforms. Key features such 

as HR, PA, PI, HRV, and PWV are extracted and analyzed by a machine learning model to classify 

normal or abnormal conditions. Normal states allow continuous monitoring, while anomalies trigger 

alerts and logging. The model is then adaptively updated, enabling accurate, real-time, and reliable 

cardiovascular assessment. 

RESULTS AND DISCUSSION 

Experimental Evaluation Framework 

In order to evaluate the efficacy of the suggested triboelectric-based anomaly prediction and 

cardiovascular monitoring system, an experiment was constructed to test the signal acquisition quality, 

consistency of features, accuracy of anomaly detection, physiological adaptability, and overall 

computational efficiency. The assessment was aimed at testing whether the proposed self-powered 

wearable system could successfully monitor cardiovascular activity and detect related anomalies in real-

time. 
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Software and Implementation Details 

The proposed triboelectric-based cardiovascular monitoring and anomaly prediction framework was 

implemented using MATLAB (R2023a) for signal acquisition simulation, preprocessing, feature 

extraction, and statistical analysis. Deep learning models (CNN–LSTM) were developed in Python using 

TensorFlow and Keras, while classical models such as SVM were implemented with Scikit-learn. 

Visualization and performance evaluation were carried out using Matplotlib. All experiments were 

conducted on a standard multi-core workstation capable of supporting real-time processing and 

inference. 

Dataset Details  

The experimental evaluation used a cardiovascular dataset collected from soft wearable triboelectric 

sensors under resting and mild activity conditions. Continuous pulse waveforms were segmented into 

cardiac cycles, and key features such as HR, PA, PI, HRV, and normalized PWV were extracted. Data 

were labeled as normal or anomalous and split into training, validation, and testing sets to ensure reliable 

and unbiased evaluation across subjects. 

Performance Metrics and Formulae 

The proposed system was evaluated using standard classification metrics. Accuracy measures overall 

correct predictions, Precision indicates the proportion of correctly predicted anomalies, Recall reflects 

the proportion of true anomalies detected, and F1-score balances precision and recall. The ROC curve 

assesses the trade-off between true positive and false positive rates. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + TN + FP + FN
 𝑋 100                                                                                                        (9) 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 𝑋 100                                                                                                                            (10) 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 𝑋 100                                                                                                                                 (11) 

F1 − score = 2 ×
Precision×Recall

Precision+Recall
                                                                                                                   (12) 

In equation 9, the metric Accuracy shows the overall correctness of predictions, in equation 10, the 

metric Precision shows the proportion of correctly identified anomalies on all the predicted anomalies, 

in equation 11, the metric Recall shows the proportion of actual anomalies that were correctly identified, 

in equation 12, the F1-score shows the mean value of the two metrics, Precision and Recall. 

Cardiovascular Signal Quality and Stability Analysis 

Figure 3 shows that the triboelectric sensor maintains high signal quality across conditions, achieving 

an average SNR of 22.6 dB at rest, 19.3 dB during walking, and above 17.1 dB during mild activity. In 

contrast, PPG sensors suffer significant degradation due to motion and unstable optical contact. The 

strong biomechanical coupling of triboelectric sensing reduces motion artifacts, enabling reliable and 

continuous cardiovascular monitoring even under non-stationary conditions. 
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Figure 3. Signal-to-noise ratio (SNR) under different physiological conditions 

Feature Consistency and Variability Analysis 

In assessing the stability of the cardiovascular features that were captured, a statistical analysis was 

conducted involving heart rate (HR), pulse amplitude (PA), pulse interval (PI), heart rate variability 

(HRV), and a proxy of pulse wave velocity (PWV). 

Table 2. Statistical analysis of extracted cardiovascular features 

Feature Mean Value Standard Deviation Coefficient of Variation (%) 

HR (bpm) 72.8 3.9 5.36 

PA (mV) 1.46 0.12 8.21 

PI (Ms) 823 41 4.98 

HRV (ms) 52.3 4.6 8.79 

PWV (normalized) 1.18 0.09 7.63 

Table 2 shows the minimum variability across the features that were captured, which validates the 

consistency of the cardiovascular metrics derived from the triboelectric signals. The minimal variation 

of coefficients indicates that the features were different enough to train machine learning models for the 

prediction of anomalies. 

Figure 4 shows stable cardiovascular features over time, with heart rate varying by less than 4 bpm and 

pulse interval exhibiting low fluctuations (coefficient of variation < 5%), indicating accurate cycle 

segmentation and peak detection. Although pulse amplitude shows slightly higher variability due to 

vascular and motion effects, it remains clinically acceptable. Overall, consistent feature trends confirm 

effective preprocessing and reliable classification based on true physiological changes rather than 

noise.4.7 Cardiovascular Anomaly Detection Performance 
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Figure 4. Feature stability over continuous monitoring duration 

Table 3. Anomaly prediction performance comparison 

Method Accuracy (%) Precision (%) Recall (%) F1-score (%) 

Proposed Triboelectric + CNN-LSTM 94.8 ± 1.1 94.1 ± 1.3 95.4 ± 1.0 94.7 ± 1.2 

Triboelectric + SVM 88.5 ± 1.9 87.3 ± 2.1 89.0 ± 1.8 88.1 ± 2.0 

PPG + LSTM 90.7 ± 1.5 89.6 ± 1.7 91.2 ± 1.4 90.4 ± 1.6 

PPG + Threshold 82.9 ± 2.6 81.2 ± 2.8 83.4 ± 2.5 82.3 ± 2.7 
 

Table 3 indicates that the proposed model effectively learns temporal variations in cardiovascular 

signals, achieving superior classification and F1-score. Metrics were computed using standard formulas: 

Accuracy = (TP+TN)/Total, Precision = TP/(TP+FP), Recall = TP/(TP+FN), and F1 = 2PR/(P+R). 

 

Figure 5. Anomaly detection accuracy versus monitoring duration 

Figure 5 shows that detection accuracy increases rapidly during the initial minutes, then converges and 

stabilizes over time. The consistent performance across long durations confirms the model’s suitability 

for continuous, long-term wearable monitoring.4.8 False Alarm Rate and Reliability Analysis 
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Figure 6. False alarm rate comparison 

Figure 6 shows that the proposed system reduces the false alarm rate to 4.1%, outperforming threshold-

based PPG (11.6%) and conventional ML methods (7.9%) due to adaptive learning. Lower false alarms 

minimize user fatigue and improve the reliability of wearable monitoring. 

Detection Latency and Real-Time Capability 

 

Figure 7. Average detection latency 

Figure 7 proposed system demonstrates the accomplishment of cardiovascular anomaly prediction in 

almost real-time, owing to the system averaging detection latency of 26-30ms, with the system's latency 

being a result of quick feature extraction and streamlining neural network inference. Thus, making the 

system applicable for early warning and emergency response. 

Comparative Discussion with Existing Wearable Systems 

Table 4. Comparative evaluation of wearable cardiovascular monitoring technologies 

System Power 

Requirement 

Motion 

Robustness 

Continuous 

Monitoring 

Intelligent 

Prediction 

Proposed 

Triboelectric System 

Self-powered High Yes Yes 

PPG Wearable Battery-powered Moderate Yes Limited 

ECG Holter Monitor Battery-powered High Limited Yes 

Pressure Sensor 

Wearable 

Self-powered Low Yes No 
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Table 4 presents a comparative evaluation of the proposed triboelectric-based wearable cardiovascular 

monitoring system against widely used wearable technologies, including photoplethysmography (PPG) 

wearables, ECG Holter monitors, and pressure sensor–based systems. The comparison is conducted 

across key performance dimensions such as power requirement, motion robustness, continuous 

monitoring capability, and intelligent prediction. 

Discussion 

The results show that the proposed triboelectric wearable enables continuous, self-powered 

cardiovascular monitoring and anomaly prediction, overcoming the power limitations of optical and 

electrode-based sensors. The CNN-LSTM model effectively learns spatiotemporal patterns, improving 

detection accuracy and reducing false alarms through adaptive learning. Although long-term validation 

and further optimization for ultra-low-power devices are needed, the system demonstrates a reliable, 

cost-effective, and sustainable solution for advanced wearable cardiovascular healthcare. 

CONCLUSION AND FUTURE WORK 

The growing demand for energy-efficient and reliable cardiovascular monitoring motivates the 

development of a soft, wearable triboelectric-sensing framework integrated with a smart prediction 

model for real-time health monitoring. The system employs a self-powered pulse acquisition mechanism 

based on contact electrification and electrostatic induction, enabling continuous monitoring without 

external power while maintaining high signal quality. Experimental results demonstrate a mean signal-

to-noise ratio (SNR) above 22 dB at rest and over 17 dB during low-intensity activity, outperforming 

conventional optical PPG wearables, particularly under motion. A CNN–LSTM prediction model 

captures temporal cardiovascular patterns, improving detection accuracy to 94–95%, reducing false 

alarms by ~40%, and achieving response times below 30 ms. By learning subject-specific cardiovascular 

behavior, the system effectively distinguishes physiological anomalies from transient fluctuations. The 

framework’s self-powered, motion-robust, and adaptable design makes it suitable for chronic disease 

management, outpatient monitoring, elderly care, and post-operative surveillance, where uninterrupted 

data acquisition is critical. Reliable detection of irregular pulse patterns supports early intervention and 

reduces healthcare system burden, overcoming limitations of traditional Holter-based monitors. 

Challenges remain in fully uncontrolled, long-term real-world deployment. Future work will focus on 

clinical-scale validation across diverse populations, ultra-low-power embedded optimization, 

lightweight adaptive learning models, privacy-preserving techniques like federated learning, and 

multimodal physiological sensing. This study demonstrates that combining triboelectric sensing with 

intelligent anomaly prediction bridges the gap between laboratory prototypes and clinically relevant 

cardiovascular monitoring, advancing personalized, data-driven healthcare. 
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