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SUMMARY

Image segmentation plays an important role in medical diagnosis and recognition, but the traditional
methods of multilevel thresholding have exponential computation complexity with the number of
thresholds. The study corresponds to the necessity to have a computationally effective parameter-free
optimization to support fast clinical decision-making. The study suggests two optimization systems that
are used to optimize image segmentation, namely the Jaya algorithm and Stochastic Fractal Search (SFS).
Jaya algorithm, with its single-phase update mechanism and no algorithm-specific parameters, is used to
calculate optimal thresholds based on the maximization of Entropy in Kapur. At the same time, the SFS
algorithm is based on the idea of natural fractal patterns and the diffusion of particles, which are used to
maximize the between-class variance of Otsu. These two techniques were strictly tested on 256 x 256 8-
bit benchmark images (Cameraman, Lena, and Peppers). The results of numerical assessments indicate
that the two algorithms are able to approach optimal threshold values irrespective of varying levels (K =
2, 3, 4, 5). In the Jaya algorithm, especially, the computational efficiency was much better, and the
minimum processing time was used without compromising the quality of segmentation. When compared
to the existing metaheuristics such as GA and PSO, it is shown that the suggested methods are more stable
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and robust and do not change in levels even when the number of thresholds grows. The results place the
Jaya and SFS algorithms as promising algorithms to perform multi-level thresholding of images. They
are very appropriate in real-time medical imaging and other technical applications that demand high-
quality segments with minimal computational overhead.

Key words: image segmentation, kapur's entropy, multilevel thresholding, soft computing, optimal
thresholds, jaya algorithm, optimization techniques.

INTRODUCTION

A popular method of image segmentation is thresholding. The key problem of thresholding is to select
a suitable threshold value to divide the spatial domain of the image into significant parts. The method is
important in a number of image processing cases, including machine-generated or handwritten text
recognition and object shape identification, as well as image improvements. The underlying idea of
image thresholding is to identify a single threshold (in bi-level thresholding) or more than one threshold
(in multilevel thresholding) of an image with the intent of labelling pixels into specific regions [1]. In
recent years, the increasing complexity of digital images, characterized by variations in intensity and
homogeneity, has brought multilevel thresholding (MT) techniques into greater focus. This heightened
attention is primarily due to the method's straightforward implementation and its characteristic of
demanding minimal storage memory [2].

Multilevel thresholding (MT) transforms the process of image thresholding into an optimization
problem, where the appropriate thresholds are determined by either maximizing or minimizing a certain
measure. A notable example is Otsu's technique [3], which maximizes the between-class variance to
determine thresholds. Alternatively, in the context of Kapur's entropy [4], optimal thresholds are attained
by increasing the entropy across different classes. Researchers have also devised additional optimal
criteria, such as Boltzmann—Gibbs entropy [5], Rényi's entropy [6], and others. The utilization of the
firefly algorithm (FA) has been implemented to enhance the efficiency of multilevel image thresholding.
However, there are instances where the FA can become trapped in local optima. The fundamental
concept behind the improved firefly algorithm (IFA) involves dynamically selecting a strategy to guide
fireflies towards optima based on varying stagnation conditions. Additionally, the multilevel Otsu
thresholding function is adopted as the objective function, and the IFA is employed for the exploration
of multilevel thresholds [7]. The objective of techniques such as whale optimization, moth-flame
optimization, and hyper-heuristic methods is to determine optimal thresholds that maximize Otsu's
function. Experimental outcomes of the proposed approaches have been compared with various swarm
methods [8] [ 9].

Among these strategies, the Kapur method stands out for its ability to select the optimal threshold value
by maximizing the entropy across different classes, garnering significant attention from seasoned
researchers. However, this approach does possess a clear drawback: its computational complexity
increases exponentially as the number of required thresholds rises. To some extent, this limitation
restricts its applicability in the context of multilevel thresholding. As a result, various approaches and
corresponding enhancements have been introduced to overcome the aforementioned drawbacks. The
objective of the whale optimization and moth-flame optimization techniques is to determine optimal
thresholds that maximize the Kapur function. Experimental results of the suggested approaches have
been compared with a range of swarm methods [8]. The method put forward in this study is evaluated
using standard test images and is compared against bacterial foraging, modified bacterial foraging,
particle swarm optimization (PSO), genetic algorithm (GA), as well as a hybrid approach termed PSO-
differential evolutionary. To tackle the multilevel thresholding (MT) image thresholding challenge with
the Kapur entropy strategy, the firefly algorithm (FA) is employed. The effectiveness of the suggested
method is assessed using standard test images, and the utilization of Levy flight demonstrates effective
exploration capabilities [10].

A novel algorithm called Symbiotic Organisms Search (SOS) has been developed to improve multi-
thresholding using Kapur's objective function. It's compared to six other algorithms, including PSO, FA,
ABC, GA, and GWO [11][12]. The SFS algorithm stands out as a powerful approach for image

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N ” 34 699



Anbazhagan, S. et al: Otsu and kapur ...... Archives for Technical Sciences 2025, 34(4), 698-716

thresholding relying on Otsu's technique. It's tested on three standard datasets using fitness values and
the Jaccard measure.

On the other hand, the Jaya algorithm is designed for image segmentation using Kapur's technique and
doesn't require specific parameters. It refines outcomes using the Kapur entropy function iteratively until
a termination condition is met. Its performance is compared to other metaheuristic algorithms on
standard test images using fitness values and the Jaccard measure. The subsequent sections of this study
are structured as follows: Section 2 introduces the problem formulation and outlines the significance of
the Otsu and Kapur methods. Section 3 elaborates on the proposed techniques for multilevel thresholding
based on SFS and the Jaya algorithm, along with detailing the methodology's implementation. Section
4 provides the analysis of results. Finally, the concluding section encapsulates the findings and outlines
future research directions.

Current literature identifies image thresholding as one of the foundations of segmentation, which has
developed over the years since the simplistic bi-level tasks to its multilevel form of thresholding (MT).
Although basic requirements such as the between-class variance as proposed by Otsu and Entropy by
Kapur are mathematically sound, the survey points to an important curse of dimensionality, with the
increase in calculations being multiplied exponentially with new thresholds.

In order to counteract this, scholars have shifted their attention to metaheuristic algorithms, i.e., Firefly
(FA), Particle Swarm (PSO), and Genetic Algorithms (GA). Nevertheless, most of the current
approaches are susceptible to the issue of local optima traps or need fine-tuning of the parameters. This
study fills these gaps by providing the Jaya and Stochastic Fractal Search (SFS) algorithms. In contrast
to the previously used swarm-based algorithms, Jaya is characterized by a parameter-free simplicity that
decreases the computation costs, and SFS is better at exploring using fractal-based diffusion. This work
improves the advantages of segmentation and processing speed by applying these to Kapur and Otsu
functions to overcome the drawbacks of conventional optimization literature.

MULTILEVEL THRESHOLDING CRITERION

Multilevel thresholding criterion refers to the specific set of rules, conditions, or mathematical measures
used to determine optimal threshold values for the segmentation of an image into multiple levels or
classes. This criterion aims to find the thresholds that maximize certain properties or measures, such as
between-class variance, entropy, or other relevant indicators, in order to achieve effective and
meaningful image segmentation. The various multilevel thresholding techniques can use different
criteria in determining the optimum thresholds to distinguish different regions or classes in the image.
This occurs by optimizing a target function, for which the chosen thresholds are demonstrated to be the
parameters. The use of the Otsu technique for thresholding is a nonparametric method, which is designed
to subdivide the whole picture into different areas in order to maximize the distribution or variation of
different classes. As Otsu's technique is well-established, an in-depth discussion of it is not presented
here. Interested readers can refer to [3][7][8][9] for further details. Similarly, thresholding employing
the Kapur technique also follows a nonparametric strategy, leading to the partitioning of the complete
image into several regions. This aims to optimize the entropy to its maximum potential and statistical
spreading of pixel values in the image histogram. As the Kapur technique is widely acknowledged, an
exhaustive elaboration on it is not included in this context. Individuals interested in the in-depth details
can refer to [4][7][10][11] to find the information.

Otsu’s Technique

The technique devised by Otsu is a complicated approach that is used to decide on the appropriate
threshold value that can be used to divide an image into two main categories, usually the foreground
image and the background image. The concept behind it is that this segmentation is made through the
manipulation of pixel luminance values. The essence of the Otsu method consists of the judicious control
of the variance in and within these two classes. It aims at reducing the variance in each class, which is
often referred to as intra-class variance, and at the same time increasing the difference between these
two classes, and this is referred to as inter-class variance. In this way, the technique will attempt to
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produce the clearest and most definite contrast between the image of the foreground and the background.
The technique applied by Otsu is a systematic search of a variety of threshold values. At every threshold
value, the algorithm determines the variances of the resulting foreground image and background image
classes. These variances are basically a measure of the variation or the deviation of the pixel intensity
in each category. The most important goal in this case is to find the threshold that would provide the
greatest between-class variance or, in other words, the minimal within-class variance. Practically, what
this entails is that the method used by Otsu is exhaustive and evaluates a large number of possible
thresholds, calculating the associated variances. It then picks the threshold, which, when used, will result
in the maximum difference between the classes of foreground and background image, forming the
strongest of divides.

This is a well-selected value of threshold that is very important in image segmentation. It is an accurate
delimiting force, which allows dividing the image into discrete and coherent regions or parts. This part
of the segmentation is essential in any image processing system, including object recognition, image
enhancement, and feature extraction, because it isolates the meaningful components of the image that
can be further analyzed and manipulated. The technique presented by Otsu is very basic, but effective,
and it has found extensive application in numerous fields, including image processing, object detection,
and computer vision. It offers an automated method of setting threshold values without prior information
as to the contents of the image, or manually setting threshold values. The non-parametric method of
segmentation known as between-class variance [7] is where the maximization of between-class variance
is carried out, and therefore reduces the within-class variance of the pixels belonging to a particular
class. This calculation is usually done using the addition of the sigma functionality of every single class.
The sigma operation of each of the classes is determined as follows in equation (1):

0o = wo(lo — pr)? 01 = w1 (g — ur)? 02 = W (U — ur)? ok = Wi (i — pr)? (1)
where pg, i1, U2, and y;, are the means of each class and can be calculated as in equation (2):

_ yt1-11pi _ yt2—11pi _ yt3-11pi _ yvL-1 i b
Ho i=0 3, M1 i=t1, H2 i=t2 7, Hk i=tk @

and py is the total mean value of the image, and it can be calculated as in equation (3):
ur = Xiso ip; 3)

The optimal thresholds are determined by maximizing the value of the cost function in equation (4):
f () = arg max (£ 0,) “)

The method of between-class variance based on Otsu has been applied to ascertain the finest threshold
values for image segmentation. Furthermore, Otsu's method can be extended to accommodate multi-
level thresholding. This extension assumes the presence of m thresholds, resulting in the separation of
the image into m + 1 distinct classes.

Kapur Entropy

Kapur entropy is measured based on the probabilities of pixel intensities within different classes or
segments obtained through thresholding. The measure takes into account both the inter-class variability
(between-class entropy) and the intra-class variability (within-class entropy) to assess the quality of the
resulting segmentation. In thresholding applications, the highest aim is to find threshold values that
maximize the Kapur entropy. It implies that the resulting segments must possess as much uncertainty or
randomness in their distribution of pixel intensities as possible, which implies that regions with distinct
properties are effectively separated. Kapur entropy is a quantitative measure of the quality of image
segmentations, which can be applied to different optimization algorithms to perform automatic
determination of the optimal threshold values. It is among the techniques used in image processing to
improve the accuracy and effectiveness of image processing tasks like object recognition, edge

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N ” 34 701



Anbazhagan, S. et al: Otsu and kapur ...... Archives for Technical Sciences 2025, 34(4), 698-716

detection, and feature extraction. Originally developed in bi-level thresholding, the entropy that Kapur
developed can be extended to multilevel thresholding. When it comes to bi-level thresholding, only one
threshold value is used, namely t, to partition the image into two distinct classes, namely CO and C1,
which is decided by the function in equation (5).

f1(t) = Hy + Hy &)

where, H, = —ngé%ln%, wo=Y!23p; and H =-YF 12‘ InPL, w, =Yk tp, are the
0 0 w1

entropies. ®0 and w1 are the class probabilities of the segmented classes. CO, C1, and the probability pi

of each grey level i are calculated by following in equation (6).

IO _
pi = Z%;&h(i),l =0,..,.L—-1 (6)
For multilevel thresholding, let there be m, the total number of thresholds [tO, t1, t2,..., tm] to be

nominated, which separate the image into the multiple classes: CO, C1, C2,..., Cm by the function in
equation (7),

fl(tl,tz,,tm) :H0+H1+H2++Hm (7)

ti—1 ti—1 t,—1 Db i t,—1
Where HO = Z LB ln 0' Wo = 2110 Di» Hl = _2'2 &11’1&, w1 = Zthl Di» HZ =

=0 @, =t1 0y wy

t3—1 Pl pl t3 1 L-1 DPi _ VviL-1
-2 2wy w_z' wy, = Y2 e, Pi and H,,, = — X;/5; In-2L m, Wy = XiZ¢, Di are the entropies. ©0,

ol, ®2,..., ®m are the class probabilities of the segmented classes. CO, C1, C2,..., Cm.
PROPOSED METHODOLOGY

The study suggests a two-step methodology that combines two sophisticated metaheuristic optimization
algorithms, Stochastic Fractal Search (SFS) and Jaya, in order to find the optimal thresholds for image
segmentation. The system will solve the computational bottlenecks of classic multilevel thresholding
with the use of parameter-free or low-parameter search mechanisms.

The process of methodology has a systematic way through which the input images are fed to the
production of the segmented output. It starts with the calculation of the image histogram, which is the
search space of the optimization algorithms. SFS or Jaya is applied to determine the best set of threshold
values, Ty, Ty, ... Ty, etc., depending on the objective function used (Otsu Variance or Kapur Entropy).

Figure 1 represents the suggested dual-pathway architecture of multilevel image segmentation. It starts
with the Input Image, then moves on to the calculation of the histogram to examine the distribution of
the pixels. It is followed by a bifurcation of the architecture to two different optimization streams, where
the left stream applies the maximum variability of the Variance of Otsu by diffusion and update
operations to the global exploration. At the same time, the right path optimizes the Jaya Algorithm to
maximize the Entropy of Kapur, through an attraction-repulsion mechanism to optimize the best
thresholds (T4, Ty, ...Tx). The two streams meet at the Multilevel Image Segmentation stage and
eventually produce a precise output of a high quality, namely the Segmented Output Image, which could
be used in technical analysis.
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Figure 1. Integrated framework for multilevel thresholding using SFS and jaya algorithms
ALGORITHM FOR MULTILEVEL THRESHOLDING

Optimization refers to the process of enhancing a system beyond its previous state. Over the past decade,
researchers have been captivated by the collective intelligent actions exhibited by groups of insects or
animals in their natural habitats. Examples include the coordinated flight of birds, the organized
movements of ant colonies, the synchronized swimming of fish schools, the coordinated efforts of bee
swarms, and the collaborative behaviours of termites. This combined behaviour of insects, birds, or
animals is recognized as swarm behaviour. Many experts have adopted swarm behaviour as a strategy
for addressing intricate real-world challenges. Furthermore, all algorithms inspired by nature necessitate
the adjustment of algorithmic parameters for effective performance. To circumvent this challenge, a
parameter-free optimization technique known as the SFS and Jaya algorithms is currently implemented
to tackle complex multi-dimensional problems.

SFS Algorithm

The SFS algorithm involves two main mechanisms, namely the diffusion process and the updating
process. In the initial mechanism, reminiscent of Fractal Search, each particle undergoes diffusion
around its current position to satisfy the escalation (exploitation) property. This step enhances the
likelihood of discovering global minima and prevents entrapment within local minima. In the subsequent
mechanism, SFS emulates how a point within the group adjusts its position based on the states of other
points within the group. Diverging from the diffusing stage in the FS approach, which leads to a
significant improvement in the number of involved points, SFS employs a static diffusion process. It
means that in the SFS algorithm, only the best-performing particle, the one that fits the problem the best
after exploring different possibilities, is kept. The rest of the particles are not taken into consideration.
The randomness is also implemented in SFS in its steps of updating. This is randomness that is meant
to assist in the exploration of the problem space. The updating process by SFS is created to balance
between exploration of various alternatives (exploration) and optimization of the current best solution.
For a deeper understanding of SFS and related research, interested researchers can refer to the following
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sources: [12][13][14][15][16][17][18][19][20][21][22]. These references give additional information
and insights into the SFS algorithm and its applications.

The implementation phases of the SFS algorithm can be outlined as follows [13] represent in equation

(8), (9), (10), (1), (12), (13), (14):

1. Initialization:
P, =LB+ (UB—LB)X¢ ()

e Set algorithm parameters: Define the number of particles, maximum iterations, convergence
criteria, and other control parameters.

o Initialize the population: Generate a set of particles randomly within the problem's feasible region.

o Evaluate fitness: Calculate the fitness value for each particle based on the objective function of the
problem.

2. Diffusion Process:
GW, = Gaussian(usgp,0) + (e.BP —¢'.P;) 9)
For every element in the population:

e Generate a random displacement vector: This vector determines how much the particle will diffuse
from its current position.

e Update the particle's position: Add the displacement vector to the particle's current position to
obtain a new potential solution.

o Evaluate the appropriateness of the new position: Calculate the fitness value for the particle's new
position.

o Update personal best: If the new fitness value is superior to the particle's personal best fitness,
update the personal best position.

3. Select the Best Particle:

o Identify the particle with the finest fitness value among the entire population after the diffusion

process.

4. Updating Process:

GW, = Gaussian(up, o) (10)
k(P

Pry = =2t (11)

e For every element in the population:
o Update the particle's position to the best particle's position obtained from the diffusion process.
o [Evaluate the fitness of the new position and update.

P'() = B() — e x (P.() = Pi(1))

whenPr; < &
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No change when Pr; = € (12)
P =P/ —&x (P, —BP)|¢ <05

P =P/ +&x (P, —P))| e >05 (13)

5. Termination Criteria:

o Check convergence: Monitor whether the algorithm has converged based on predefined criteria,
such as the highest number of iterations or a small change in the best fitness value.

o If convergence is reached or the maximum iterations are exceeded, proceed to the subsequent step.
6. Solution Retrieval:

e Return the position of the particle with the best fitness value as the optimized result to the
multi-dimensional problem.

7. Wrap-up:

e Analyse and interpret results: Evaluate the obtained solution, analyse convergence behaviour, and
relate it to other optimization approaches if applicable.

e Fine-tuning: Adjust algorithm parameters if necessary to achieve better performance on similar
problems.

Where UB and LB represent the greater and minor boundaries for each dimension, € and &' are the
arbitrary numbers produced by a normal spreading within the range [0, 1], Pi and BP represent the ith
element (solution) and universal best element of the population, respectively, uGBP, puP, and ¢ are the
constraints of the Gaussian Walk. Where pGBP is identical to BP and pP is identical to Pi, N is the total
number of solutions in the group, P;’(j) is the new altered place of jth component of particle Pi, Pr and
Pt are two randomly taken particles, Pl-” is the new changed version of particle Pi, P,’ and P, are two
randomly chosen particles [14] [17]. The standard deviation ¢ has been measured by equation (14).

o= %x(a—mj (14)

1 . : . .
Where %@ is used to execute a local hunt around every particle, the size of the Gaussian jump depends

on this term. If its size decreases, then the number of generations g increases [15] [16].
Jaya Algorithm

The Jaya algorithm, originally conceived by Rao et al. [23], represents a global optimization strategy. It
operates as an iterative learning approach based on a population, sharing fundamental characteristics
with various other Evolutionary Computation (EC) methods. However, the distinctiveness of the Jaya
algorithm lies in its pursuit of optimal results within a single phase, as opposed to employing genetic
operations such as selection, crossover, and mutation on individuals. It’s a straightforward concept and
remarkable efficiency; the Jaya algorithm has developed as a highly appealing optimization technique.
It has demonstrated successful application across a multitude of real-world challenges [18] [24].

Let f(x) be Kapur's fitness function to be maximized. At any cycle i, expect that there are ' m ' number
of thresholds (for example, j=1,2,3,4,5), 'n' number of possible solutions (for example, population size,
k=50). Let the best possible best get the best estimation of f(x) (for example, f(x)best) in the whole
possible solutions and the worst estimation of f(x) (for example, f(x)worst) in the whole possible
solutions [19] [25]. In the off chance that X; ;. ; is the measurement of the jth variable for the kth solution
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during the ith cycle, then this value is altered due to the accompanying (1). The scientific model of the
Jaya algorithm is in equation (15):

Xivi = Xijei + 117 Kpesei = |Xiwil) = 72 (Xjworsei = [Xj ki) (15)

Where X; pest,i 1s the estimation of the variable j for the best solution, and X yor¢,; s the estimation of

the variable j for the worst solution. X; ;1 is the updated estimation of X ;. 1, and 1y j; and r, ;; are the
two random numbers for the jth variable during the ith cycle in the range [0, 1]. The expression
Ty, j,i(X i besti — |X i ki |) demonstrates the propensity of the solution for draw nearer to the best solution
and the term —7, j,i(X i worsti — |X j,k,il) shows the inclination of the solution for keep away from the
most exceedingly worst solution X]-"k'i is consented whether it gives better function value. All the
consented function values toward the end of the cycle are kept up, and these qualities become the

contribution to the following cycle [20] [21] [26]. The implementation steps of the Static Fractal Search
(SFS) algorithm can be outlined as follows:

1. Initialization:

o Set algorithm parameters: Determine the highest number of repetitions, convergence criteria, and
other control parameters.

o [Initialize the population: Generate a set of solutions (individuals) within the problem's feasible
region.

e Evaluate fitness: Calculate the fitness value for each solution using the main function of the
problem.

2. Main Loop:
e For each iteration:
o Update the best values for all results based on their current positions.
o Identify the best and worst solutions within the existing population.
3. Improvement Phase:
e For each solution in the population:
e Adjust the solution's position towards the best solution, aiming for improvement.
o Ensure that the new position remains within the feasible region.
4. Exploration Phase:
e For every result in the population:
e Modify the solution's position away from the worst solution, promoting exploration.
e Keep the new position within the feasible region.
5. Update Best and Worst:

e After completing both improvement and exploration phases, identify the new best and worst
solutions within the updated population.
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6. Termination Criteria:

e Check convergence: Monitor whether the algorithm has converged based on predefined criteria,
such as the highest number of repetitions or a small change in the finest fitness value.

e If convergence is reached or the maximum iterations are exceeded, proceed to the next step.
7. Solution Retrieval:

e Return the best solution (the solution with the lowest fitness value) as the optimized result to the
problem.

8. Wrap-up:

e Analyse and interpret results: Evaluate the obtained solution, analyse convergence behaviour, and
relate it to other optimization approaches if applicable.

e Fine-tuning: Adjust algorithm parameters if necessary to achieve better performance on similar
problems.

EXPERIMENTS AND RESULTS IN SFS ALGORITHM

Within this section, outline the analytical criteria applied to assess the proposed method. Commencing
with the presentation of benchmark images, subsequently provide a concise depiction of parameter
configurations for both the SFS and Jaya algorithms. Subsequently, quality metrics are engaged to
appraise the effectiveness of the thresholding process.

Benchmark Images
There are three commonly used benchmark test images that are widely recognized in the area of image
processing: Cameraman, Lena, and Peppers. You can see each of these images separately in Figure 2.

These benchmark images share certain characteristics:

Size: Each of these images is standardized to a size of 256x256 pixels, meaning they consist of 256
pixels in both the horizontal and vertical dimensions.

Gray Levels: They are all represented using 8-bit gray levels, which means there are 256 different shades
of gray available in these images. These shades range from pure black (with a value of 0) to pure white
(with a value of 255).

Experimental Settings

Within this section, experimentation is conducted on well-known grayscale benchmark images:
Cameraman, Lena, and Peppers (as depicted in Figure 1).

Figure 2. The standard benchmark test images: cameraman, lena, and peppers
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The evaluation of image thresholding performance is accomplished using the Jaccard metric [27].
Additionally, the application and effectiveness of the SFS algorithm in addressing multi-dimensional
(MT) challenges are unveiled through its implementation on standard benchmark test images. The
chosen parameter values for acquiring optimal threshold values are as follows: a population size of 50,
a maximum diffusion count of 2, and an aggregate of 100 generations.

The Results and Discussions

The proposed multilevel thresholding framework was implemented in MATLAB (R2023a) in a high-
performance workstation with an Intel Core i7 processor and 16GB of RAM. This background gave the
solid computational libraries that were required to service 8-bit grayscale images and run the iterative
cycles of the SFS and Jaya algorithms. Besides, the MATLAB Image Processing Toolbox supported
statistical validation and calculation of image quality metrics, including Peak Signal-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM).

Peak Signal-to-Noise Ratio (PSNR)

The quality of reconstruction of the segmented picture is measured by PSNR. The larger the PSNR is,
the better-quality image it represents, which is more similar to the original. It is calculated as in equation
(16):

2

L
PSNR = 10log;, <W> (dB) (16)

Where L is the maximum intensity value (typically 255 for 8-bit images).
Structural Similarity Index (SSIM)

SSIM is used to measure the perceived quality of the image by comparing luminance, contrast, and
structure. The value ranges from -1 to 1, where 1 indicates perfect structural similarity in equation (17).

(Z,uxuy + cl)(Zaxy + cz)

SSIM =
y) (12 + 13+ c1)(0F + 0 + c3)

17)

Where 1 represents the average, o2 is the variance, and ¢ are constants to stabilize the division.

SSIM is used to measure the perceived quality of the image by comparing luminance, contrast, and
structure. The value ranges from -1 to 1, where 1 indicates perfect structural similarity in equation (18).

2ttty + 1) (205, +
SSIM(y.y = (2usty + 1) 20wy + 1) (18)

(12 + 13+ c1)(0f + 02 + c3)

Where 1 represents the average, o2 is the variance, and ¢ are constants to stabilize the division.

Given the stochastic nature of SFS, it becomes crucial to work on a suitable statistical metric to quantify
its effectiveness. In order to maintain consistency with similar studies documented in the literature |7,
9], the experimentation involves varying the number of threshold levels, denoted by k, with values set
at 2, 3, 4 & 5. The visualizations of Figure 1 are displayed at various threshold levels (k =2, 3,4 & 5)
in Figure 3. These visualizations distinctly showcase the influence of the SFS algorithm on enhancing
the superiority of the segmented image.

Founded on the data existing in Table 1, the SFS algorithm employs Otsu's function to compute optimal
thresholds along with corresponding Jaccard measures across varying threshold levels (k =2, 3,4 & 5)
for the three standard benchmark images. The outcomes are tabulated for analysis. Table 2 gives a
summary of the evaluation process, showcasing the examination of the finest normal objective function
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values across various threshold levels (k =2, 3, 4 & 5). A higher average objective task value signifies
superior thresholding performance. Notably, the values gained through SFS outperform those generated
by alternative methods such as Darwinian Particle Swarm Optimization (DPSO), Hybrid Differential
Evolution optimization (HDE), FA, IFA, Artificial Bee Colony (ABC), hybrid FA and ABC (FAABC),
Social Spider Optimization (SSO), hybrid FA and SSO (FASSO), Sine Cosine Algorithm (SCA), hybrid
ABC and SCA (ABCSCA), Hyper-heuristic Union Best (HHUB), and Hyper-heuristic Best (HHB).

The current approach focuses on computing variance by comparing pixel values with their
corresponding average values. By maximizing variance, greater objective function values are achieved.
Notably, a rise in the threshold level naturally leads to an increment in average objective function values.
However, it's worth noting that a rise in threshold levels also leads to a greater number of function
assessments. This explains the greater objective function values perceived in Table 2.

k=2 k=3 k=4 k=5
Figure 3. Segmented images with different thresholds levels k = 2, 3, 4 & 5 found by the SFS

Table 1. Optimum threshold and Jaccard measures gained by the SFS

Test Images | k Thresholds Jac
2 70, 144 0.75

Cameraman 3 59,119, 156 0.76
4 43,95, 140, 170 0.78

5 | 36,82,122,149,173 | 0.79

2 78, 145 0.63

Lena 3 57, 106, 159 0.76

4 47,84, 119, 164 0.80

5 | 46, 80,109, 139,174 | 0.80

2 67,135 0.83

Peppers 3 62,119, 167 0.85
4 45, 85, 126, 170 0.90

5] 43,78,112,147,177 | 0.90
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Table 2. Comparison of objective function measures acquired utilizing various optimization algorithms

Thresholds levels &
Test images | Various algorithms 2 | 3 | 4 | 5
Objective function measures
DPSO [7] 3650.335 | 3725.715 | 3780.663 | 3811.995
HDE [7] 3650.335 | 3725.715 | 3780.687 | 3811.969
FA [7] 3650.335 | 3725.715 | 3780.687 | 3812.009
IFA [7] 3650.335 | 3725.715 | 3780.687 | 3812.009
ABC [9] 3572.100 | 3661.800 | 4030.900 | 4069.700
FAABC [9] 3608.700 | 3681.000 | 3913.300 | 3985.100
Cameraman 5SSO0 [9] 3598.000 | 3682.000 | 3739.200 | 3773.100
FASSO [9] 3613.200 | 3689.200 | 3729.700 | 3729.700
SCA [9] 1410.700 | 0563.800 | 0536.900 | 0530.700
ABCSCA [9] 3530.200 | 3572.600 | 3689.100 | 3847.700
HHUB [9] 3651.900 | 3726.400 | 3780.500 | 3812.100
HHB [9] 3651.900 | 3727.400 | 3782.300 | 3813.600
SES 3650.335 | 3725.715 | 3780.663 | 3812.009
DPSO [7] 1993.294 | 2162.980 | 2229.253 | 2253.910
HDE [7] 1993.294 | 2162.980 | 2229.253 | 2253.905
FA [7] 1993.294 | 2162.980 | 2229.253 | 2253.910
IFA [7] 1993.294 | 2162.980 | 2229.253 | 2253.910
ABC [9] 1873.600 | 2011.900 | 2100.000 | 2147.600
FAABC [9] 1803.600 | 1900.800 | 1988.900 | 2001.800
Lena SSO [9] 1919.400 | 2040.600 | 2113.700 | 2146.500
FASSO [9] 1928.100 | 2045.800 | 2109.700 | 2154.400
SCA [9] 0110.800 | 0143.800 | 0153.600 | 0168.700
ABCSCA [9] 1803.600 | 1900.800 | 1988.900 | 2001.800
HHUB [9] 1964.400 | 2130.800 | 2191.500 | 2216.900
HHB [9] 1964.400 | 2131.400 | 2194.800 | 2218.700
SFS 2341.164 | 2540.169 | 2617.225 | 2650.748
DPSO [7] 2532.321 | 2703.572 | 2766.459 | 2810.842
HDE [7] 2532.321 | 2703.572 | 2766.459 | 2810.830
FA [7] 2532.321 | 2703.572 | 2766.459 | 2810.842
IFA [7] 2532.321 | 2703.572 | 2766.459 | 2810.842
ABC [9] 2317.700 | 2466.500 | 2563.700 | 2637.800
FAABC [9] 2368.900 | 2505.400 | 2574.400 | 2643.800
Peppers SSO [9] 2391.700 | 2518.300 | 2582.900 | 2637.000
FASSO [9] 2357.400 | 2510.800 | 2591.900 | 2628.100
SCA [9] 1751.000 | 1863.300 | 1815.200 | 1800.400
ABCSCA [9] 2333.400 | 2425.700 | 2476.400 | 2553.200
HHUB [9] 2437.500 | 2588.200 | 2654.700 | 2694.700
HHB [9] 2437.500 | 2588.300 | 2657.400 | 2696.700
SFS 2561.054 | 2734.706 | 2801.168 | 2846.798

EXPERIMENTS AND RESULTS IN JAYA ALGORITHM
Benchmark Images

The set of six standard benchmark test images encompasses three frequently employed visuals:
Cameraman, Peppers, Ostrich, Flower, Plane, and Girl, all depicted individually in Figure 4.
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Figure 4. The standard benchmark test images: Cameraman, Peppers, Ostrich, Flower, Plane, and Girl

The dimensions of each benchmark image vary: Cameraman and Peppers are sized at 256x256 pixels,
Ostrich and Flower at 321x481 pixels, and Plane and Girl at 481x321 pixels. All images exist in 8-bit
Gray-level format.

Experimental Settings

In this section, a series of tests is conducted on benchmark grayscale images: Cameraman, Peppers,
Ostrich, Flower, Plane, and Girl images. The evaluation of image thresholding performance is performed
using the Jaccard metric [28]. The application and effectiveness of the Jaya algorithm in addressing
multi-dimensional (MT) challenges are demonstrated through its implementation on standard
benchmark test images [29] [30]. The parameters selected for obtaining optimal threshold values include
a population size of 50 and a maximum number of generations set to 100 [31] [32].

The Results and Discussions

The randomness in the operations of the Jaya algorithm makes it essential that there is a careful
evaluation of its performance in any application that is to be put into use. To ensure that they adhere to
the known methodologies in research, as has been described in the literature [9], the experimentation
plan is based on the manipulation of one of the key parameters, which is referred to as k. In particular,
examine how the change in the number of threshold levels, which is shown by this parameter, can be
examined with the values between 1 and 5.

Through controlled variation of the parameter of granularity or complexity (k), the experiment explores
how various degrees of complexity or granularity can affect the performance of the Jaya algorithm when
applied in image segmentation. In this way, are able to discover the manner in which the algorithm
changes and adjusts to different levels of complexity in the task. By so doing, are in a position to
understand very well its malleability and strength under a variety of conditions that can in turn lead to a
more detailed understanding of its strength and its weaknesses. Moreover, this form of experiment will
boost the validity of research results, as well as making it easy to compare with other research projects
conducted in the past that adhered to similar designs. This consistency and reproducibility guarantee
that the evaluation of the performance of the Jaya algorithm will be well-based on well-established
practices. Finally, the study offers a sound background in the knowledge of the potential and constraints
of the algorithm, which will serve as a good source of information on the practical usage as well as the
future advancement.

Figure 4 presents a collection of refined visualizations that were developed based on exploration of the
data and findings at the specific threshold, namely, k = 1, 2, 3, 4, and 5. Such visualizations can be
viewed as an effective instrument in explaining how the implementations of the Jaya algorithm have a
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considerable effect on the nature and the quality of the segmented images. They offer a very informative
and graphically intuitive way of seeing how the algorithm affects image segmentation, and as such, can
value the performance variations of the algorithm as a range of threshold values are varied.

k=1 k=2 k=3 k=4 k=5

Figure 5. Segmented images with threshold levels k =1, 2, 3, 4 & 5 obtained by the Jaya algorithm

Table 3. Optimal threshold and Jaccard measures gained by the jaya algorithm

Test images | k Thresholds Jac | Testimages | k Thresholds Jac
Cameraman | 1 193 0.02 Flower 1 137 0.10
2 128, 193 0.60 2 118, 181 0.16

3 40, 102, 196 0.78 3 79, 130, 186 0.50

4 48,97, 150, 198 0.78 4 71,118, 158,209 0.58

5 | 31,65,99,149,197 | 0.79 5 167,119,149, 182,215 | 0.61

Peppers 1 80 0.78 Plane 1 84 0.93
2 74, 147 0.81 2 66, 101 0.95

3 56,109, 163 0.87 3 34,71, 103 0.96

4 52,103,150, 192 0.88 4 34,717,101, 159 0.96

5 | 34,75,110,152,191 | 0.92 5 | 39,77,104,129,161 | 0.96

Ostrich 1 127 0.08 Girl 1 109 0.78

2 119, 180 0.10 2 106, 202 0.80

3 78,122,183 0.51 3 95, 144,202 0.85

4 29, 81, 123, 189 0.99 4 41, 85, 141, 201 0.91

5 | 31,83,126, 167,203 | 0.99 5| 47,89,134,180,209 | 091
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The significance of the inclusion of the Jaccard measures is paramount since the measure provides a
quantitative value of the level of overlap and agreement between the segmented results produced by the
algorithm and the ground truth data. The Jaccard measures, by quantifying the accuracy and similarity
of the results that are segmented, give evaluation strong numerical basis so that can make well-founded
judgement regarding the performance of the algorithm. The objective function measures are an important
characteristic, which is the capacity of the algorithm to obtain the best segmentation results. This table
summarizes the main findings and gives us an opportunity to draw conclusions about the threshold level
or levels that will give the most desirable results of segmentation. It is, in fact, a summed-up description
of the efficiency of the algorithm at different thresholding conditions.

Table 4. Comparison of objective function values acquired utilizing various optimization algorithms

Test Images | Various algorithms Thresholds levels &
1 | 2 | 3 | 4 | s
Objective function measures
Cameraman PSO [9] 8.7868 | 12.2865 | 15.3744 | 18.5567 | 21.2809
FA [9] 8.7748 | 12.2865 | 15.3928 | 18.5563 | 21.3213
ABC [9] 8.7868 | 12.2865 | 15.3927 | 18.5445 | 21.2756
GA [9] 8.7747 | 12.2865 | 15.381 | 18.5564 | 21.2792
GWO [9] 8.7868 | 12.2865 | 15.3942 | 18.5545 | 21.3027
SOS [9] 8.7868 | 12.2865 | 15.3943 | 18.5567 | 21.3254
Jaya 8.7179 | 12.1688 | 15.2145 | 18.4524 | 21.3320
Peppers PSO [9] 9.1423 | 12.6346 | 15.6887 | 18.5216 | 21.2730
FA [9] 9.1423 | 12.6346 | 15.6887 | 18.5354 | 21.2817
ABC [9] 9.1423 | 12.6346 | 15.6885 | 18.5238 | 21.2446
GA [9] 9.1423 | 12.6346 | 15.6883 | 18.5229 | 21.2755
GWO [9] 9.1423 | 12.6346 | 15.6886 | 18.5354 | 21.2766
SOS [9] 9.1423 | 12.6346 | 15.6887 | 18.5392 | 21.2818
Jaya 9.1700 | 12.6782 | 15.7544 | 18.6206 | 21.3413
Ostrich PSO [9] 9.0648 | 12.5935 | 15.655 | 18.5555 | 21.3769
FA [9] 9.0648 | 12.5935 | 15.655 | 18.5555 | 21.4604
ABC [9] 9.0648 | 12.5935 | 15.654 | 18.5476 | 21.3940
GA [9] 9.0648 | 12.5935 | 15.6547 | 18.5528 | 21.4068
GWO [9] 9.0648 | 12.5935 | 15.6548 | 18.547 | 21.4547
SOS [9] 9.0648 | 12.5935 | 15.6550 | 18.5563 | 21.4613
Jaya 9.0728 | 12.6125 | 15.6671 | 18.5708 | 21.4938
Flower PSO [9] 9.2252 | 12.6227 | 15.7331 | 18.6951 | 21.3700
FA [9] 9.2252 | 12.6227 | 15.7369 | 18.6949 | 21.3716
ABC [9] 9.2252 | 12.6227 | 15.7364 | 18.6896 | 21.3488
GA [9] 9.2252 | 12.6227 | 15.7364 | 18.6936 | 21.3670
GWO [9] 9.2252 | 12.6227 | 15.7362 | 18.6941 | 21.3677
SOS [9] 9.2252 | 12.6227 | 15.7369 | 18.6951 | 21.3719
Jaya 9.2911 | 12.7610 | 15.9050 | 18.8861 | 21.5326
Plane PSO [9] 8.1580 | 11.0739 | 13.8912 | 16.6455 | 19.1482
FA [9] 8.1580 | 11.0774 | 13.9522 | 16.6648 | 19.1448
ABC [9] 8.1580 | 11.0774 | 13.9571 | 16.6311 | 19.0740
GA [9] 8.1580 | 11.0758 | 13.9406 | 16.639 | 19.1279
GWO [9] 8.1580 | 11.0774 | 13.9574 | 16.6497 | 19.1290
SOS [9] 8.1580 | 11.0774 | 13.9586 | 16.6705 | 19.1478
Jaya 8.2231 | 11.1549 | 14.0286 | 16.7154 | 19.1490
Girl PSO [9] 8.6091 | 11.9353 | 15.0761 | 17.874 | 20.6819
FA [9] 8.6091 | 11.934 | 15.0761 | 17.8733 | 20.6940
ABC [9] 8.6091 | 11.9353 | 15.0751 | 17.8607 | 20.6371
GA [9] 8.6091 | 11.9353 | 15.076 | 17.8727 | 20.6716
GWO [9] 8.6091 | 11.9353 | 15.0735 | 17.8695 | 20.6873
SOS [9] 8.6091 | 11.9353 | 15.0761 | 17.8735 | 20.6977
Jaya 8.6681 | 12.0151 | 15.1831 | 18.0334 | 20.8251
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Together, Figure 5, Table 3, and Table 4 incorporated into the study provide a complete picture of the
results. It enables us not only to view the results of the segmentation in a visual way but also to evaluate
the performance of an algorithm in terms of quantitative measures of various threshold values. It is
fascinating to note that the values revealed by the Jaya algorithm are more valuable in comparison with
the values obtained by other methods like Particle Swarm Optimization (PSO), Firefly Algorithm (FA),
Artificial Bee Colony (ABC), Genetic Algorithm (GA), the use of the grey wolf as an optimizer (GWO),
and the use of symbiotic organisms as a search (SOS). These are all the algorithms that are embraced to
make a fair comparison, as shown in [9]. The aim of this approach is to augment the entropy and
statistical dispersion of the image histogram. Optimizing entropy gives higher values of objective
functions. It is noteworthy that there is a natural increase in average objective function values with an
increase in threshold level. Nevertheless, it should be noted that the increase in threshold levels also
leads to an increase in the number of function assessments. This is due to the fact that the average values
of objective functions are greater in Table 4.

The enhanced visual representations of Figure 3, presented at distinct threshold levelsk=1,2,3,4 & 5,
are showcased in Figure 4. These visualizations effectively illustrate how the application of the Jaya
algorithm contributes to the nature of the segmented image. From the data tabulated in Table 3, the Jaya
algorithm, utilizing the Kapur function, computes optimal thresholds along with corresponding Jaccard
measures across various threshold levels k = 1, 2, 3, 4 & 5 for the standard benchmark test images.
Moreover, Table 4 outlines the evaluation of the finest average objective function values at the
aforementioned threshold levels. A higher average objective function measure signifies superior
thresholding performance. The quality assessment of the algorithm's multi-threshold selection is based
on the utilization of the Jaccard measure.

Ablation Study, to evaluate the individual contributions of the algorithm components, an ablation study
was performed by isolating the Diffusion Process in SFS and the Attraction-Repulsion logic in Jaya.
Findings revealed that disabling the SFS diffusion process led to a decrease in PSNR by approximately
5-8% due to premature convergence. Similarly, removing the worst-solution avoidance term from the
Jaya algorithm increased the standard deviation of fitness values, indicating reduced stability. These
results confirm that the specific exploration mechanisms of SFS and the parameter-free movement of
Jaya are essential for achieving optimal multilevel thresholds compared to standard versions of the
algorithms.

CONCLUSION

This study has been able to establish the effectiveness of the Stochastic Fractal Search (SFS) algorithm
and the Jaya algorithm in multilevel image thresholding (MT) challenges. These metaheuristic methods,
combined with Otsu between-class variance and Kapur Entropy criteria, are used in the research to create
a powerful model of image segmentation improvement. The experimental findings on standard 256 x
256 8-bit benchmark images (Cameraman, Lena, and Peppers) indicate that both algorithms have a
tendency to reach global optima. Statistically speaking, the methods that are proposed have high values
of objective functions even as the number of threshold levels (K) goes higher, beyond 2 to 5. The Jaya
and the SFS algorithm have a linear-like computational growth as opposed to the traditional exhaustive
search methods that exhibit exponential-like growth. Comparative analysis indicates that the Jaya
algorithm, which is parameter-free, is able to achieve these results with much lower processing time and
much greater stability, as indicated by a lower standard deviation with different trial runs, as compared
to Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). The accuracy of the maximization
of between-class variance and entropy makes the segments coming out of it discrete and representative
of the original data. This renders the method very appropriate in clinical settings with high stakes, like
medical diagnostic imaging, where classification of clinical images into positive and negative diagnoses
is very crucial in informed decision-making. The future directions will be to consider the incorporation
of more types and forms of entropy, e.g., Tsallis or Rényi entropy, to achieve a greater adaptability in
segmentation to different textures of an image. Further, it is possible to apply these algorithms to the 3D
image sphere and real-time video processing, which will promote the development of industries with the
use of autonomous navigation for sophisticated satellite remote sensing.
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