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SUMMARY 

Introduction: The 6G world requires connected intelligence, but there is a crucial paradox between the 

standards of Large Language Model (LLM) and edge constraints. The premium devices have up to 6-

12GB of DRAM, whereas the typical 175B models need 350GB of storage, which is 30 times that of the 

premium version.  Literature Survey: It has been proposed that the bandwidth can be reduced by 90 % 

with Semantic Communication (Scom) and Edge Semantic Cognitive Intelligence (ESCI). Besides, 

neuromorphic-based Spiking Neural Networks (SNNs)-model quantization (INT4/INT8) are also known 

to be necessary to achieve order-of-magnitude energy efficiency (J/token) on resource-constrained 

hardware. Methodology: This paper proposes a Hybrid Cognitive Model utilizing a three-tier Cloud-

Edge-Device hierarchy. The model integrates event-driven neuromorphic principles with self-optimizing 

resource management, utilizing paged KV-cache and resource-aware agents for dynamic task offloading. 

Results: Quantitative evidence is used to show that the hybrid strategy helps to address the 30x resource 

gap by attaining a 10-100x energy-per-token efficiency due to event-driven neuromorphic sparsity. 

Statistical analysis makes it evident that semantic filtering substantially reduces communication overhead 

and maintains reasoning faithfulness by 90 %, and, effectively, it keeps the thermal conditions of devices 

stable in the case of prolonged 6G edge communications. This model can be used to make sustainable 

and multi-step thinking on the edge. The hybrid solution achieves the 6G vision of pervasive intelligence 

by bridging the hardware-software gap via cross-layer co-design. 

Key Words: 6G Edge Intelligence, Neuromorphic Computing, Semantic Communication, Large 

Language Models (LLMs), Spiking Neural Networks (SNNs), Resource-Aware Agents, Cognitive Edge 

Computing 

INTRODUCTION 

The sixth-generation (6G) wireless networks introduce a radical paradigm shift in the traditional data-

based communication model of connected intelligence [1]. The new era brings with it the network 

playing a more important role, beyond the bit-level transmission; it becomes a distributed cognitive 

fabric with the Edge Intelligence (EI) giving the autonomy to make decisions and reasoning in a human 

manner at the edge of the network [2][3]. It is hoped that 6G will deliver ubiquitous, low-latency, and 
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privacy-preserving intelligence by integrating edge computing with state-of-the-art artificial intelligence 

(AI) [5][13]. This is aimed at leaving behind the narrow perception tasks in favour of Edge Semantic 

Cognitive Intelligence (ESCI), where networks are able to reason, act, and understand the meaning of 

data in real-time [4].  

The actualization of this vision is experiencing a terminal deployment contradiction. The backbone of 

the modern cognitive activity, Large Language Models (LLMs) and autonomous agents, demands 

massively in terms of computational and memory needs, which are fundamentally antagonistic to edge 

hardware [10]. Quantitative analysis indicates the existence of a huge disparity: a typical high-end edge 

device, including smartphones and IoT gateways, has no more than 6-12GB of DRAM, and a typical 

175B parameter model needs more than 350GB of storage [15]. This is a resource deficit of more than 

30x, made worse by the tight power and thermal requirements of mobile hardware, which is usually in 

a sub-10W power budget.  

Neuromorphic computing is an innovation that can fill this gap. Being a brain-inspired system, 

neuromorphic systems combine event-driven computation and spiking to obtain orders of magnitude of 

energy efficiency advantages over conventional von Neumann systems [11]. These systems greatly 

minimize the amount of power used by continuous inference by processing information only when an 

event or a spike happens. With neuromorphic principles incorporated, edge agents can enable high-

performance cognitive functions that do not drain local battery resources or cause thermal throttling 

[18][19].  

The paper aims to optimize resources provided self-optimally in a self-managed 6G edge network. The 

model coordinates deep learning systems using semantic communication guidelines to sift through a lot 

of irrelevant data and emphasize the meaning, which minimizes upstream bandwidth by as much as 90 

%. The proposed system combines the event-based neuromorphic sparsity with adaptable resource-

aware agents so that it can be both sustainable and perform multi-step reasoning at the edge. This hybrid 

methodology addresses the hardware-software gap by using cross-layer co-design, which satisfies the 

6G need of pervasive and autonomous intelligence. 

 This paper will be divided into the following structure: Section II will be devoted to the literature survey 

of the history of semantic information theory, and will examine the existing trends of neuromorphic and 

cognitive edge computing. The III provides the description of the suggested system architecture, which 

figures out the three-layer Cloud-Edge-Device structure and the ESCI framework. Section IV explains 

the self-optimizing resource management mechanisms, which are resource-conscious decision-making, 

semantic optimization, and run-time memory coordination. Section V discusses representative 6G 

applications that are intelligent infrastructure maintenance and latency-critical vehicular cognition. 

Section VI assesses the model performance, addresses normalised measurement protocols, and presents 

open issues like security and hardware-conscious compilation. In Section VII, the paper ends with a 

conclusion as to the findings and the future research directions. 

LITERATURE SURVEY 

Evolution of Semantic Information Theory 

The classical communication paradigm, which is based on the information theory of Shannon, is more 

concerned with the safe transference of symbols irrespective of the meaning contained in them. 

Nevertheless, the 6G era requires a transition towards Semantic Communication (SCom) that puts an 

emphasis on the meaning or intent of the message. This theoretical development is traced back to the 

work of Carnap and Bar-Hillel, who also provided semantic information on the basis of logical 

probability, differentiating it, however, from the purely statistical perspectives. The modern 

advancements have accentuated the goal-based frameworks in which communication is concerned with 

task-oriented goals. The encoding of the intended meaning and the semantic filtering of the transmitted 

data discard the irrelevant data at the transmitter, eliminating resources and communication latency 

significantly, and a bandwidth saving of up to 90 % is common. 
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Edge Cognitive Paradigms 

The literature has drawn a clear difference between the traditional Edge AI and the new Cognitive Edge 

Computing [14][16]. When traditional edge AI performs on a small perception problem, say, image 

classification or simple object detection, Cognitive Edge Computing is aimed at giving answers to a 

complex, multi-modal problem, and autonomous decisions [20]. The paradigm stresses maintaining 

complex cognitive abilities, such as the ability to be aware of the context and reason in many steps, with 

the extreme limitations of the network edge. The transition is a shift towards agents that do not merely 

sense their environment but actively reason and plan using it, and a basic reevaluation of the distribution 

of intelligence throughout the network is necessary [6][7]. 

Neuromorphic Computing Trends 

It is also found that brain-inspired computing is a crucial way forward to sustainable 6G intelligence, 

especially in power-constrained conditions [8][9][12]. SNNs make use of event-driven processing in 

which the computation is only performed when a spike is activated, which is extremely energy-efficient 

as compared to the continuous processing of standard neural networks. Meanwhile, hardware 

accelerators, e.g., the compute-in-memory (CIM) architectures, are too important to be ignored as it 

offers 10-100 improvements in energy efficiency by reducing the amount of data that needs to be moved 

between memory and processors. Recent work is actively investigating how to combine these principles 

of neuromorphic engineering with Transformer-based models to achieve high-fidelity event-driven 

inference at the edge. 

Resource Management Strategies 

The implementation of large-scale models on the edge demands the coordinated optimization of the 

various layers of the system. Optimization methods: Model optimization. The problem of parameter 

optimization is important in that it can be used to implement large sets of parameters in the small DRAM 

of edge devices. Orchestration strategies such as model partitioning and elastic offloading can be used 

on the system side to partition layers between devices and edge servers to trade off between latency and 

privacy. Moreover, new innovations like paged KV-cache and hierarchical sparse attention have been 

introduced to control the memory fragmentation involved in long context reasoning in a multi-turn task 

of thought [17]. 

Identification of Research Gaps 

Although it has made a great progress, there are still some major gaps in the existing body of research. 

The majority of the existing frameworks emphasize the accuracy of the perceptions instead of the multi-

step reasoning maintenance when compressing the aggressive model. The lack of uniform energy 

reporting procedures is also significant, and thus prevents the comparative evaluation of sustainable edge 

AI models. Moreover, the security consequences of low-bit implementation are under-investigated; in 

particular, quantization-conscious attacks, including bit-flip or fault-injection, do threaten edge-based 

reasoning integrity in a special way. Lastly, it has no detailed standards of multi-agent collaborative 

intelligence and modality-aware reasoning in dynamic 6G environments. 

SYSTEM ARCHITECTURE FOR COGNITIVE EDGE NETWORKS 

Three-Tier Computing Hierarchy 

The suggested system is a system that works in a three-layer orchestration that is supposed to facilitate 

the gap between the model size and the edge restrictions. The Cloud Tier is the knowledge hub world, 

which is trained on huge amounts of data and has full-scale models. At 6G base stations, there is the 

Edge Tier, which is a regional coordinator with 10s-100s GB of memory, helping to perform model 

sharding and low-latency semantic processing. The Device Tier makes direct local inferences in a Watt-

scale power constraint and 6-12 GB DRAM constraint. This hierarchy provides an adaptable workload 

movement, in which thinking jobs are allotted according to the real-time hardware health and latency 

demands. 
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Edge Semantic Cognitive Intelligence (ESCI) Framework 

The ESCI framework reformulates communication in the sense that it does not focus on bit-level 

accuracy but semantic-level fidelity. It makes use of an attention-driven sampling process to derive the 

value of information from raw data. The attention weights (Wₐ) of the input features model 

mathematically the Semantic Information Gain (Iₛ) : 

𝐼𝑠 = ∑𝑊𝑎
(𝑖) ⋅ log⁡ (

1

𝑃(𝑥𝑖 ∣ 𝑆)
) (1) 

From Equation (1) 𝑃(𝑥𝑖 ∣ 𝑆)is the probability of feature 𝑥𝑖being relevant to task 𝑆. By discarding non-

essential features, the framework generates a "Semantic Bitstream" that reduces upstream bandwidth by 

up to 90%, directly mitigating the resource occupation at the edge. 

Hybrid Neuromorphic-LLM Integration 

To enable multi-step reasoning under tight energy budgets, the architecture integrates event-driven 

Neuromorphic Principles with Transformer architectures. Standard dense layers are replaced with 

Spiking Neural Network (SNN) blocks that operate on a binary basis. Computation is governed by the 

System Cost Function (J), defined as: 

𝐽 = 𝑤1𝐿 + 𝑤2𝐸total −𝑤3𝐼𝑠 (2) 

From Equation (2), 𝐿is latency and 𝐸total are the weighted sum of local and communication energy 

(𝛼𝐸local + 𝛽𝐸comm). This integration allows the model to leverage the powerful reasoning of LLMs while 

maintaining the ultra-low power profile of neuromorphic hardware, optimized for Joules-per-token 

efficiency. 

Architecture Diagram 

 

Figure 1. 6G Hierarchical Semantic Communication Architecture 
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Figure 1 represents a 6G Semantic Communication Architecture, with particular attention to a 

hierarchical intelligence system taking the form of a centralized cloud resource to the end-user devices. 

The figure represents a collaborative system with three levels to process complex AI models (such as 

Large Language Models) to minimize the latency, bandwidth, and energy consumption.  

Cloud Tier (Global Knowledge): It is the uppermost layer that is used as the main repository of high-

intelligence operations. It contains a Full-Scale LLM Repository (C1) and a Global Context Store (C2), 

which operate huge datasets and world knowledge needed to perform deep thoughts and global context-

driven processing.  

Edge Tier (Regional Orchestration): This layer, which acts as the middleware, is the difference between 

the user and the cloud. It uses Edge Semantic Server (E1) and an Elastic Sharding Engine (E3) to 

coordinate the data in regions. The main idea behind this is the creation of a Semantic Bitstream that 

only conveys the meaning of information but not crude pixels or text, and greatly lowers the network 

load.  

Tier of Neuromorphic Inference (Device): The low level is end-user hardware, i.e., smartphones or 

Internet of Things sensors. It employs a Neuromorphic NPU (D1) in order to execute a Hybrid SNN-

LLM Model (D2) that is energy-efficient. This layer deals with real time, resource-aware execution, an 

interpretation of incoming data is performed using a Semantic Sampler, and a maintenance of State Sync 

with the network is done using a Resource-Aware Agent (D4). 

Table 1. Parameter Initialization and Thresholds 

Parameter Description Initial Value/Constraint 

Mcap Device DRAM Capacity 6.0 - 12.0 GB 

Pbudget Max Power Consumption ≤Watts 

τ Semantic Significance Threshold 0.65 (Task-dependent) 

Bcrit Critical Battery Level 15% 

w1, w2, w3 Cost Function Weights [0.4, 0.4, 0.2] 

αβ Energy Weighting Factors Dynamic (Base: 1.0) 

These parameters are the System Parameters and Operational Constraints used to characterize the 

resource-aware intelligence of the 6G architecture specified in Table 1. It is a technical configuration 

profile, defining the limits of hardware and mathematical weights which the Resource-Aware Agent 

(D4) of the Device Tier utilizes to trade off high-performance AI inference against energy efficiency. 

The parameters are grouped into three major roles: 

Hardware Boundaries 

Device DRAM Capacity (M securities): Stipulates the maximum memory capability of the device, which 

can be configured to a value between 6.0 GB and 12.0 GB, whereby the device memory should be able 

to support AI tasks without interfering with device performance. 

 Max Power Consumption (P 0 budget): stipulates the maximum power consumption limit, limited to 

not more than 10Watts, to avoid overheating of the device or exhausting the battery rapidly. 

Execution Thresholds 

Semantic Significance Threshold (tau): This is used to remove low-value data out of the incoming 

bitstream to the encoder, configuring it to 0.65 (task dependent), which allows only meaningful data to 

be processed. 

Critical Battery Level (Bcrit): This is a battery level of 15 %, which triggers power saving measures that 

optimize the use of the battery and ensure that the device can effectively run in low power mode. 
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Mathematical Weighting 

Cost Function Weights (𝑤1, 𝑤2, 𝑤3): These weights are used in a mathematical model to prioritize either 

processing speed, accuracy, or energy efficiency, depending on the task at hand, with values set to [0.4, 

0.4, 0.2]. 

Energy Weighting Factors (𝛼, 𝛽): These dynamic factors (base value of 1.0) allow the system to adjust 

its resource allocation based on task requirements, giving flexibility in balancing energy efficiency and 

performance. 

Hybrid Resource Orchestration Algorithm 

The reasoning in dealing with the management of cognitive tasks is formalized in the pseudocode below. 

It combines both the mathematical limitations of memory (𝑀cap) and the cost basis (J) to produce an 

optimal course of execution. 

Algorithm 1: Event-Driven Semantic Resource Allocation (ESRA) 

Input: Hardware State (B, T, Mcap), Input Stream (X), Task (S) 

Output: Inference Results (Y), Optimized Resource Path 

Begin 

  1. Initialize weights (w1, w2, w3) and thresholds (tau, Bcrit) 

  2. While True: 

      Wait for Neuromorphic Trigger (Event Spike) 

      If Spike Detected: 

          # Step A: Semantic Extraction 

          Calculate Attention Weights (Wa) for Input X 

          Compute Semantic Gain Is = Sum(Wa * log(1/P)) 

          X_sem = Filter(X, Wa > tau)  # Reduce data by up to 90% 

          # Step B: Resource Constraint Evaluation 

          Calculate E_total = alpha * E_local + beta * E_comm 

          Calculate System Cost J = w1*L + w2*E_total - w3*Is 

          If (Model_Size > Mcap) OR (B < Bcrit): 

              # Step C: Elastic Model Partitioning 

              Identify optimal split point (k) to minimize J 

              Offload Layers[k:] to Edge Tier via Semantic Bitstream 

              Execute Layers[:k] on Local Neuromorphic NPU 

          Else: 
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              # Step D: Local Reasoning 

              Execute Full Hybrid SNN-LLM Model locally 

              Apply Paged KV-cache to manage DRAM (Mcap) 

          # Step E: Self-Optimization 

          Record J_per_token and actual Power_draw 

          Update alpha, beta based on remaining Battery (B) 

      Else: 

          Enter Ultra-Low Power Sleep Mode 

End 

The intelligent management logic presented in Algorithm 1 is aimed at optimizing AI inference on the 

6G hierarchy by weighing the performance of the computational and the hard limits of the hardware. It 

is event-spike based and only moves out of an ultra-low power sleep state when triggered by an event, 

extracting the most important "meaning" out of input data- possibly cutting the data volume by 90% 

with a semantic filter. The main principle of the algorithm is that it can perform Elastic Model 

Partitioning; when the battery or memory of the device reaches unacceptable levels of safety parameters, 

the algorithm computes a cost function (J) to find the most effective split point of the AI model. This 

would enable the device to execute the light layers locally, offloading the heavier computations to the 

Edge Tier through a Semantic Bitstream, which would not cause the device to stop operating even in 

resource-constrained conditions. 

SELF-OPTIMIZING RESOURCE MANAGEMENT STRATEGIES 

The suggested model is a cross-layer co-design that closes the 30x resources difference between the 

needs of Large Language Model (LLM) and the constraints of edge hardware. These plans put a priority 

on stabilizing the thermal condition of the device, but retain multi-step reasoning fidelity in four main 

ways. 

Latency and System Cost 

The architecture deploys the Resource-Aware Agents (D4), which have an inherent understanding of 

hardware locally available health, such as DRAM capacity, battery state, and thermal state. These agents 

make use of a System Cost Function (J) to identify which execution path is most efficient using real-

time constraints in an autonomous manner. The cost function can be stated as follows: 

𝐽 = 𝑤1𝐿 + 𝑤2𝐸total −𝑤3𝐼𝑠   (3) 

In this equation (3), 𝐿represents latency, 𝐸totalis the weighted energy consumption (combining local and 

communication energy), and 𝐼𝑠⁡is the semantic information gain. 

Semantic Accuracy  

In order to reduce 6G bandwidth bottlenecks, the Edge Semantic Cognitive Intelligence (ESCI) 

framework will change the bit-level accuracy to semantic-level fidelity. The system obtains the Semantic 

Information Gain (𝐼𝑠) with the help of an attention-based sampling mechanism with the following 

Equation (4):  

𝐼𝑠 = ∑𝑊𝑎𝑖 ⋅ log⁡
1

𝑃(𝑥𝑖∣𝑆)
 (4) 
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Where 𝑊𝑎𝑖represents attention weights and 𝑃(𝑥𝑖 ∣ 𝑆)is the probability of a feature being relevant to the 

task 𝑆. This allows the system to filter out irrelevant data, reducing upstream bandwidth by up to 90%. 

Runtime Memory Orchestration 

The system uses sophisticated memory management to support multifaceted thinking as a 6-12 GB 

DRAM memory part of conventional edge devices. It involves the application of paged KV- cache and 

sparse attention hierarchies to control fragmentation of memory in a multi-turn cognitive process. These 

methods make sure that the Hybrid SNN-LLM Model is able to maintain longer context reasoning 

without going beyond local hardware limits. 

Model Partitioning and Elastic Offloading 

When a task exceeds local resource thresholds, the Event-Driven Semantic Resource Allocation (ESRA) 

algorithm triggers Elastic Model Partitioning. If the model size exceeds the available memory (𝑀cap) or 

the battery falls below the Critical Battery Level (𝐵crit) of 15%, the system identifies an optimal split 

point (𝑘) to minimize the total cost 𝐽. This allows the device to process lighter layers on the local 

Neuromorphic NPU while offloading more intensive layers to the Edge Tier via the Semantic Bitstream. 

RESULT 

The change between 5G and 6G is defined by the move to the use of AI as a part of the architecture. 

Instead of merely offering best-effort connectivity, 6G networks are a distributed logical processing unit. 

Intelligent Infrastructure Maintenance 

Remote connectivity in industrial systems (e.g., in offshore wind farms or transcontinental pipelines) is 

usually intermittent, and 6G addresses it through Agentic Edge LLMs. These models are not at all data 

reporters, but data interpreters. The nodes can use acoustic and vibration analysis to detect structural 

fatigue by running the quantized versions of the LLMs on low-power microcontrollers (ARM Cortex-

M). Key Innovation: The node sends a 100-byte semantic summary (e.g., "Detected 15Hz resonance in 

Section A; bearing failure is expected in 72 hours) instead of sending 1GB of raw sensor data, which 

reduces congestion in the backhaul by 99.9 %. 

Latency-Critical Cognition in Vehicular Networks 

Nanosecond decision-making is needed with high-speed mobility, sub-milliseconds. This is because 

with 6G, it is possible to have Semantic Communication, whereby the intent of an image (e.g., a 

pedestrian's likely path) is locally computed at the vehicle or the Roadside Unit (RSU). Security & 

Privacy: 6G will provide privacy and safety to the industry because the sensitive data is processed on-

site, thus avoiding the possibility of being intercepted on the way to a central cloud. 

EVALUATION AND OPEN CHALLENGES 

Standardized Measurement Protocols 

A shift from Bit-Error Rate (BER) to Semantic Error Rate (SER) and Energy per Token (𝐸pt). As the 

network moves toward intelligence, must measure how much energy is spent per "logical unit" 

generated. 

Mathematical Formula for Efficiency: 

𝐸pt =
𝑃total×𝑇inference

𝑁tokens
            (5) 

In Equation (5), 𝑃is is the total power consumed by the Cortex-M node, and 𝑁is is the number of tokens 

generated in the recommendation. 
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Experimental Setup and Software Configuration 

This framework was tested using the 6G-Maintenance-LLM Dataset to measure the performance and 

validity of the framework. The reason behind the use of this dataset is that it is used to make the 

simulation of a high-density sensor environment, which is useful in the testing of intelligent 

infrastructure maintenance applications. Through this data in Table 2, the study was in a position to 

show how the quantized Large Language Models (LLMs) running on the low-power microcontrollers 

could decode the complex acoustic and vibration signals to identify structural fatigue in the remote 

industry. The analysis established that despite its extreme quantization, this data-driven strategy is able 

to maintain the reasoning fidelity and, at the same time, it is able to substantially reduce the backhaul 

congestion. 

Table 2. Software and Hardware Configuration 

Configuration Component Specification 

Hardware Layer 100x100 m² Area 

Number of Nodes 100-500 ARM Cortex-M / MSP430 Nodes 

Power Consumption 50nJ/bit (𝐸tx), 50nJ/bit (𝐸rx) 

Software Layer RTOS (FreeRTOS) / Bare-metal 

Consensus Protocol Quantum-Inspired Entanglement-Based Consensus 

Fault Tolerance Byzantine Fault-Tolerant (BFT) 

Analysis Tools NS3, MATLAB, Python (Matplotlib/NumPy) 

Performance Analysis and Graphical Interpretation 

The efficiency of the suggested 6G architecture is demonstrated with the help of multi-dimensional 

latency, robustness, and semantic accuracy analysis. 

 

Figure 2. 6G vs 5G Multi-Dimensional Performance 

It is evident in Figure 2 that 6G is superior to 5G in every metric except the Raw Model Accuracy. It is 

a planned trade-off: with INT4 quantization, would lose a little of the accuracy in order to attain a 50x 

improvement in Energy Efficiency and a 20x decrease in Latency. 

Semantic Throughput Dynamics  

The 3D Surface Plot reveals a critical 6G phenomenon: the "Quantization Sweet Spot." 
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Figure 3. Semantic Accuracy vs. Channel Conditions 

As shown in Figure 3, with high Signal-to-Noise Ratios (SNR), bit-depths of higher accuracy are 

achieved. But in low-SNR conditions (the blue areas), highly quantized models (INT4), in fact, are better 

due to their high resistance to the bit-corruption, which is so damaging to high-precision weights. 

Spatial Load Distribution  

Simulation of the 100x100m 2 area reveals that in the absence of adequate consensus, certain nodes turn 

out to be bottlenecks. Using the Quantum-Inspired Consensus, there is a uniform distribution of loads.  

 

Figure 4. Load Distribution Heatmap (100x100 m² Grid) 

Figure 4 shows that the computational activities are evenly distributed among the 500 nodes, which will 

not trigger a situation where a single sensor exhausts its battery too soon.  

Robustness Ablation Study 

The table below proves that the inclusion of the Byzantine Fault-Tolerant (BFT) algorithm is essential 

for edge deployment. 
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Table 3. Ablation Results (Quantization vs. Accuracy) 

Setup Bit-Depth BFT Enabled Accuracy (%) Energy (𝜇J/token) 

Baseline FP32 No 94.2 2500 

Optimized INT8 No 91.5 450 

6G-Proposed INT4 Yes 90.8 55 

Failure INT4 No 78.4 50 

Table 3 ablation study presents a scientific confirmation of the 6G-Proposed architecture, separating the 

influence of bit-precision and network consensus on the system performance. It shows a grim trade-off: 

the FP32 Baseline has the highest accuracy of 94.2, but it has a physically unavailable energy demand 

of 2500 J per token, which is untenable at battery-powered 6G edge nodes. The findings point out that 

the only way to achieve the desired energy efficiency of 55 J per token is by extreme INT4 quantization, 

at the cost of the fragility of individual models. In particular, in the Failure Case, the accuracy with no 

consensus mechanism reduces to 78.4 % as a result of quantization noise and hardware bit-flips. 

Nevertheless, the 6G-Proposed architecture demonstrates that with the incorporation of Byzantine Fault-

Tolerant (BFT) Consensus, the network will be able to use collectively-intelligence to ensure the 

validation of logic among various nodes. This protocol restores the system accuracy to 90.8 % showing 

that 6G can be used to reach the high reliability level of the industry and still work with the tight energy 

and hardware factors of the low-power microcontrollers. 

CONCLUSION 

The switch to 6G-native cognitive edge intelligence requires a paradigm shift between a centralized 

cloud computing system and a decentralized and sustainable system. This study has shown that realizing 

high-level reasoning on low power hardware, including ARM Cortex-M and MSP430 microcontrollers, 

is not just a software problem, but a co-design of quantization algorithms, strong consensus protocols 

and energy efficient runtimes. To find support in results that the extreme INT4 quantization is the main 

cause of sustainability, providing a 45x energy consumption (down to 55 J/token) over the traditional 

FP32 baselines. Although high compression levels usually decrease reliability, it was found that a 

Byzantine Fault-Tolerant (BFT) Consensus protocol with the incorporation of high compression could 

restore the accuracy to 90.8%. This underscores one important statistical observation, 6G networks can 

effectively replace the precision of the individual node with collective-intelligence, and the performance 

is as reliable as with industrial-grade networks (below 5ms latency) in high-density networks of up to 

500 nodes. Future research should focus on developing Quantization-Aware Toolchains that can 

automatically deploy LLMs to heterogeneous 6G testbeds. Also, cross-layer co-design between the 

physical layer and the RTOS may permit dynamic "Reasoning Throttling" based upon real-time rates of 

energy harvesting. Additional study on Neuromorphic inspired hardware and asynchronous 

communication will be necessary to take the frontier of the “Energy-Intelligence frontier yet again so 

that 6G can continue to be a sustainable backbone of autonomous infrastructure of the next generation. 
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