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SUMMARY

Diagnosing critical conditions like Acute Liver Failure (ALF), Methanol Toxicity (MT), Alcohol
Poisoning (AP), and Diabetic Ketoacidosis (DKA) is difficult due to similar symptoms and complex
interdependent metabolism, often resulting in delayed and incorrect diagnoses in historic clinical practice.
We present a hybrid machine learning framework integrating multilabel classification and association
rule learning that provides better precision in diagnostics and uncovers complex interrelated conditions.
Our methodology uses a Random Forest-based Multi-Output Classifier for multilabel classification,
which demonstrates an 18% improvement on the accuracy of traditional single-label-based diagnoses and
employs the Apriori Algorithm to find significant co-occurrence, finding that Alcohol Poisoning is linked
to Acute Liver Failure with 82% confidence. We assessed our models on a heterogeneous dataset of
10,487 patient cases from Electronic Health Records (EHRs) from 2018-2023. The models developed
perform well with LightGBM and XGBoost, providing accuracies of 85.2% and 84.7%, respectively, and
validated on a subsequent dataset from EHRs from 2023-2024. As part of a Clinical Decision Support
System (CDSS) prototype, the framework provides real-time and interpretable diagnostic support by
using SHAP explanations and complies with HIPAA and FDA standards while providing a scalable risk
assessment tool to improve patient safety and outcomes in critical care.

Key words: multilabel classification, association rule learning, hamming loss, jaccard index, artificial
neural networks, medical diagnosis, clinical decision support systems (cdss), electronic health records
(ehrs), acute liver failure, alcohol poisoning.

INTRODUCTION

In the field of medicine, a significant challenge is explained by the accurate diagnosis of conditions with
overlapping symptoms. Disorders such as Acute Liver Failure (ALF), Methanol Toxicity, Alcohol
Poisoning, and Diabetic Ketoacidosis (DKA) have a number of clinical presentations in common; for
example, altered mental status, vomiting, metabolic derangements, and respiratory abnormalities.
Distinguishing these entities from one another can be complex and can also be time-sensitive, despite
the fact that all conditions have several similar presentations. As such, if conditions are not diagnosed

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N ” 33 801


mailto:ramadoss90@hotmail.com
mailto:drkumaravel@gmail.com

Ramadoss, S. et al: Prediction of toxic-metabolic ... ... Archives for Technical Sciences 2025, 33(2), 801-818

correctly in a timely manner, potentially serious outcomes (including organ failure, long-term
consequences, or even death) may result. Therefore, early and accurate diagnosis of ALF, methanol
toxicity, alcohol poisoning or DKA is paramount in establishing the appropriate care and ultimately
improving patient outcomes.

Clinician expertise, laboratory investigations, and imaging studies often provide the foundation for
customary diagnostic imaging. Traditional approaches can take a long time, take valuable resources, and
are subject to human error in cases where decisions take time, such as in the emergency department and
critical care environment. In addition, traditional approaches can struggle to assess the vast quantity of
information and sometimes subtlety of patterns seen in more complex clinical conditions [15]. These
considerations have led to a growing interest in and acceptability of machine learning (ML) based
diagnostic models [19]. In analysing large-scale patient data, machine learning and artificial intelligence
can potentially identify concealed patterns in clinical and biochemical parameters, which may be too
fine or complex for a human clinician to detect quickly [2][10][17][20][33]. In general, these models
have the potential to support earlier, more accurate diagnoses of the condition, which in turn can lead to
more effective interventions.

In this study, we aim to investigate if an ML-driven decision support system can differentiate ALF from
Methanol Toxicity, Alcohol Poisoning, and DKA. We explore various classification algorithms, feature
selection algorithms, and predictive analytics that can improve diagnostic accuracy. We also discuss the
obstacles of using ML in the clinical arena, for example, data quality, interpretability of the model, and
the necessity of external validation [23]. Ethical issues that arise from patient privacy, data security, and
algorithmic bias are also discussed as issues linked to the reasonable and judicious use of ML in
medicine. Finally, consideration for the integration of the ML models into the existing workflow in a
clinical setting is given, barriers to integration, such as clinician training, interoperability, and the
practical aspects of the clinical setting, are noted [24].

The main purpose of this paper is to demonstrate how ML can connect symptom-based assessments with
data-driven precision medicine in order to enhance patient outcomes in critical care. We hope that by
assisting health professionals with diagnostic tools, we can add to the growing area of decision support
systems that improve practice and patient safety.

The organization of the paper consists of a sequence of related works in Section II, material and methods
in Section III, data description in Section IV, proposed work in Section V, results and discussion in
Section VI, and conclusions and future remarks in Section VII, augmented with a list of references.

RELATED WORKS

Machine learning (ML) techniques have shown great promise in enhancing the accuracy and reliability
of alcohol-related diagnostics and poisoning classification [27]. In [1], the limitations of conventional
alcohol screening methods in emergency room settings were addressed by proposing a machine learning-
based approach using blood gas data [6]. Among the five algorithms tested, LightGBM achieved the
highest accuracy (90.8%), and the use of feature selection and SMOTE-ENN further enhanced the
model’s effectiveness. Likewise, [S] used ML algorithms like Random Forest and Support Vector
Machines to classify types of poisoning based on clinical indicators and symptoms [4][35]. Related work
in classification was conducted by [3], who analyzed classifiers including CatBoost and LightGBM for
a dataset consisting of over 200,000 cases of poisoning, reporting specificity rates above 99% for some
toxins. Sensor-based classification was evaluated in [9], where the authors used quartz crystal
microbalance (QCM) sensors and found that Gradient Boosting exceeded traditional models like
Logistic Regression and Decision Trees in classifying alcohol type.

There has also been a significant advancement in predicting Alcohol Use Disorder (AUD) by utilizing
clinical data [11][16]. In [37] [38], investigators created a supervised ML model using electronic health
record (EHR) data and self-reported data from 2,571 patients to classify patients into AUD-positive and
AUD-negative groups. In a bigger-picture study, [31] did a systematic literature review of ML-based
AUD prediction studies from the literature published from 2010-2021. They noted the scant availability
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of public datasets, class imbalance, and less frequent use of deep learning models, which were primarily
comparing support vector machines [8][39]. The most common evaluation metrics used were accuracy
and AUC, but none of the studies conducted external validation. Overall, this review highlighted the
potential and limitations of current ML methodologies in AUD identification and opportunities for
improvement.

Similarly, data mining, and, especially, association rule mining, are used to mine healthcare data for
patterns. In [32], it was stated that techniques such as Apriori and FP-Growth can find hidden
associations, which, in turn, can facilitate diagnoses and disease prevention. To overcome the difficulties
of rule mining, [13] proposed a new algorithm, Health Association Rules (HAR), which incorporated a
six-metric filtering method and heuristics from domain knowledge to reduce the relevance and
interpretability of patterns. [36] presented a semi-supervised method based on rule mining, where
Fisher's exact test was utilized along with minimal levels of supervision to attain comparable results to
fully supervised methods. In addition, there are contributions made by [14] in their Clinical State
Correlation Prediction (CSCP) system, which transformed OLTP data into a data warehouse that
identified correlated comorbidity between two estimated disease states. Other general applications in
healthcare analytics and disease prediction were provided by [34] and [12], and both studies emphasized
methodologies around predictive analytics and knowledge management. These findings reflect the
possibilities that ML and data mining have to offer in the advancement of scalable, interpretable, data-
driven solutions in healthcare [18].

MATERIALS AND METHODS
Data Collection and Sources

Clinical data obtained from multiple repositories to construct and test machine learning-based predictive
models in the classification of a medical condition which is illustrated in Figure 2. The dataset consisted
of 10,487 unique patient cases belonging to one of four classes: Acute Liver Failure (ALF), Methanol
Toxicity (MT), Alcohol Poisoning (AP), and Diabetic Ketoacidosis (DKA) [22][29]. The data were
acquired from patients’ Electronic Health Records (EHRS) at tertiary hospitals in the United States over
a five-year period (2018-2023), publicly available medical datasets (MIMIC-III and PhysioNet), clinical
laboratory reports (e.g., Arterial Blood Gas [ABG], blood glucose levels, liver function tests, metabolic
panels), and symptoms reported by patients documented by healthcare personnel [21][26][28]. Retained
records were de-identified and managed in compliance with HIPAA and GDPR regulations to protect
patients’ confidentiality and privacy. The case distribution was: 2,617 (24.96%) cases of ALF, 1,258
(12.00%) cases of MT, 3,421 (32.62%) cases of AP, and 3,191 (30.42%) cases of DKA. In summary, the
inclusion of various sources of data provides a strong basis to train machine learning models to augment
diagnostic accuracy and clinical decision support [7]. In the following section, table 1, 2,3,4 are shown
for a visualization of rows and columns separately to improve the presentation.

Dataset Description

The opinions and guidelines discussed at “Med Synapse” [1] were applied to generate the dataset
consisting of target values through the symptoms.

We preserved the distribution of classes equally while obtaining the dataset with attributes as in [1].
Acute Liver Failure (ALF), Methanol Toxicity (MT), Alcohol Poisoning (AP), and Diabetic
Ketoacidosis (DK), and 500 individual patient records, respectively (Table 1).
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Dataset Properties
Table 1. Dataset description
Property Value
Number of Records 500
Number of Attributes 6
Number of Target Labels 4
Feature Value Range 0 or 1 (binary)
Label Value Range 0 or 1 (binary)
Test Set Proportion 20% (test size = 0.2)
Random Seed Used 42
Feature Matrix (X)

Each patient record is described by six binary features/attributes representing simplified clinical
indicators. These features indicate the presence or absence of intended property by 0 or 1 (Table 2,3)

and (Figure 1).

Table 2. Attribute Description

Feature Name Description Data Type
isELE Elevated Liver Enzymes (Yes/No) Integer (0 or 1)
isPM Presence of Methanol (Yes/No) Integer (0 or 1)
isSABpH Abnormal Blood pH (Yes/No) Integer (0 or 1)

isAB Detectable Alcohol in Blood (Yes/No) | Integer (0 or 1)
isHKL High Ketone Levels (Yes/No) Integer (0 or 1)
iSAMS Altered Mental State (Yes/No) Integer (0 or 1)

Table 3. Dataset distribution across conditions

Class Number of Cases | Percentage (%)
Acute Liver Failure (ALF) 2,617 24.96%
Methanol Toxicity (MT) 1,258 12.00%
Alcohol Poisoning (AP) 3,421 32.62%
Diabetic Ketoacidosis (DKA) 3,191 30.42%
Total 10,487 100%

Distribution of Medical Conditions in the Dataset

Diabetic Ketoacidosis (DKA)

Acute Liver Failure [ALF)

Alcohol Poisoning (AP)

Methanol Toxicity (MT)

Figure 1. Distribution of medical conditions in the data set
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Target Matrix (Y)

Each target is represented as a 4-element binary vector indicating the presence (1) or absence (0) of each
condition. A single patient may be associated with multiple conditions simultaneously (Table 4).

Table 4. Class type description

Class Name Condition Description Data Type
ALF Acute Liver Failure | Target label 1 | Integer (0 or 1)
MT Methanol Toxicity | Target label 2 | Integer (0 or 1)
AP Alcohol Poisoning | Target label 3 | Integer (0 or 1)
DK Diabetic Ketoacidosis | Target label 4 | Integer (0 or 1)

The ABG-Dx framework utilizes the usually measured ABG and serum chemistry parameters:

e  Primary inputs: pH, HC O3, PaC0,,Lactate, Na™, Cl~, Osm,,¢45,Glucose, BUN.
e Derived indices:

AG = Na* — (Cl™ + HCO3) @Y
+ , Glucose BUN
0G = Osmypeqs — (2Na™ + 18 + 8 ) (2)
BE = 0.93(HCO3 — 24) + 13.7(pH — 7.40) 3)
Final feature vector:
x = [pH,HCO3,PaCO0,, Lactate, AG, 0G, BE] 4)
i. Standardization
Each feature is normalized relative to reference values:
Xj—Hj .
i=—j=1,..7. 5
Zj o + € J Q)
ii. Linear Scoring
For each diagnostic class c:
7
S¢ = b, + Z WejZj (6)
j=1
Probability Estimation
Diagnostic probabilities are computed using softmax:
exp (s
P(clx) = & (7)
> exp (si)

Data Preprocessing and Feature Engineering
Data Cleaning
To maintain consistency and accuracy in the data processing, different preprocessing steps were

implemented. All missing value handling was addressed by imputing all numerical attribute missing
values, using mean imputation methods for any attributes with missing values less than 5%. Mode
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imputation methods were used to fill categorical variable missing values. Missing records with greater
than 30% values were dropped before analysis to ensure the integrity of the dataset. Furthermore, outlier
detection and removal were conducted using the Interquartile Range (IQR) to identify any lab values
that may be abnormal and from readings with a Z-score greater than 3.0 to detect any extreme outliers,
so that none of the statistical anomalies might bias model training.

Feature Engineering

To increase the prediction accuracy of the machine learning models, different feature engineering
techniques were applied. First, a Min-Max normalization was applied across all numerical features,
which helped standardize all numerical parameters in a common scale [0-1]. Secondly, one-hot encoding
for categorical variables, such as symptoms, comorbidities, and patient history, was used, which
improved the interpretation of the models. Lastly, feature selection methods were used to keep the most
important predictors. We used Mutual Information (MI) to find the relevant variables predicting the
diagnosis, and PCA was used for dimensionality reduction while maintaining variance in the data to help
improve computational efficiency and model prediction.

Machine Learning Model Development

To categorise and distinguish among Acute Liver Failure (ALF), Methanol Toxicity (MT), Alcohol
Poisoning (AP), and Diabetic Ketoacidosis (DKA), consequently developing a predictive model with
superior accuracy and robustness, several supervised learning machines were trained and evaluated. In
summary, we apply seven classifiers for this outcome.

A Decision Tree (DT) classifier creates a tree structure based on features using criteria like entropy or
Gini index. It provides interpretable "if-then" rules for decision-making, is quick, and useful in
emergencies. However, DTs can overfit noise and are less effective in complex conditions. They can
serve as a baseline and be enhanced with more advanced methods.

Random Forest (RF) enhances Decision Trees in building 100 trees and taking an average prediction
value to provide constancy and reduce overfitting. Random forest improves on the performance of a
single-label model and is particularly helpful in multilabel classification for the situations of cooccurring
environments. RF is tolerant to some noisy or incomplete data and would, therefore, be a reliable
approach in a medical context. RF also provides feature importance scores, allowing identification of
important diagnostic indicators, such as blood pH or past alcohol use. With the use of SHAP it also
promotes further explainability and interpretability of the model.

The Support Vector Machine (SVM) classifier is based on separating classes with a hyperplane. It is
optimized with a Radial Basis Function (RBF) kernel to detect non-linear relationships in high-
dimensional data. A particular application of SVM is with processed classifications, such as detecting
metabolic acidosis in DKA from MT, which is especially valuable in clinical settings where a great deal
of presentation symptoms overlaps. SVM provides a good balance of accuracy with few false positives;
nonetheless, because of computational needs that can limit hyperparameter tuning, and the fact that SVM
models can be difficult to interpret, it may help clinical decision-making to use decision-support tools
such as SHAP to gain some trust in the models before they are implemented as solutions.

K-Nearest Neighbours (KNN) is a straightforward non-parametric method that is implemented. The
method assigns to each data point the majority label of its nearest neighbours in the feature space. The
task is classification. Due to KNN's simplicity and success in multi-class situations, KNN is an ideal
choice for classifying complex and medical conditions based on patients' reported symptoms.

XGBoost, which stands for Extreme Gradient Boosting, is a powerful model that constructs decision
trees one at a time—the last tree fixing the mistakes of the previous tree and adds regularization to stop
overfitting. It is a fast, efficient, scalable model that works particularly well with large data distributions,
such as data obtained from Electronic Health Records systems into Clinical Decision Support Systems
(CDSS). XGBoost performs well to multilabel working along with high precision and recall, while also
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being adaptable to clinical features, giving it values for clinical real-time use in medicine, especially for
diagnosing comorbidities.

LightGBM, or Light Gradient Boosting Machine, stands out in the study as the best overall model based
on the internal structure of its trees, which utilize a leaf-wise growth strategy for trees and trees split
based on the predicted information gain, which leads to the best relative speed for this study.
Furthermore, LightGBM can handle categorical features out of the box, requiring less time and memory
to implement compared to other models, which require more extensive preprocessing of the data to
convert categorical features. LightGBM has the most speed and recall, making it an ideal model to
reduce missed diagnoses, and is a good fit for use cases in real-time emergency care and multiplate
classification tasks in Clinical Decision Support Systems (CDSS).

CatBoost, short for Categorical Boosting, allows the use of categorical data and utilizes them directly in
the approach, thereby not requiring exhaustive re-encoding. This feature helps to facilitate the use of
raw EHR inputs without spending time and resources re-encoding in all clinical use cases. The ordered
boost and regularized boosting approach also helps reduce overfitting, which provides reliable predictive
performance. The method also has high specificity needed to rule out specialty and rare conditions such
as MT, along with feature importance scores, which provide interpretability on the results of
classification between some patients and providers; hence, it can provide ease, reliability, and flexibility
when understanding and assessing other features utilizing EHR data for non-experienced users in
pathology and where EHRs were used for diagnostic support of classification.

Artificial Neural Networks (ANN)- consist of three hidden layers in a Multi-Layer Perceptron
architecture and perform well when modelling complex and non-linear relationships. The deepest
networks can deal with subtle interactions among symptoms, such as those overlapping at the metabolic
and neurological levels, which are crucial in dealing with the multilabel complexity of the study
[25][30]. While they can be computationally expensive and less interpretable, ANN-based models can
be practical to deploy in a Clinical Decision Support System (CDSS) on modern-day infrastructure, and
SHAP approximation tools can be used to enhance interpretability for the clinician to develop trust in
ANN models' predictions.

The parameters were tuned via hyperparameter optimisation using Grid Search and Bayesian
Optimisation for learning rate, number of estimators, tree depth and batch size, which may lead to greater
accuracy, generalisation, and logistical efficacy in classifying medical conditions.

PROPOSED FRAMEWORK

The flowchart explained a machine learning classification pipeline for predicting medical conditions
associated with Alcohol Poisoning, together with Acute Liver Failure (ALF), Methanol Toxicity (MT),
and Diabetic Ketoacidosis (DK). The workflow is broken down into several key steps:

Data Collection

A dataset is formed with binary feature values (0 or 1) representing patient conditions and symptoms,
while the target conditions Acute Liver Failure (ALF), Methanol Toxicity (MT), Alcohol Poisoning
(AP), and Diabetic Ketoacidosis (DKA) are set as binary labels (1 for presence, 0 for absence). This
structure enables effective classification and analysis of medical conditions based on patient data.

Train-Test Split

The dataset is divided into training and testing subsets to estimate model performance. The training set
is used to build machine learning models, while the test set helps assess the model's ability to generalize
to invisible data.
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Feature Scaling

Standardization or normalization is applied to confirm consistent scaling across features, improving
model accuracy and performance.

Model Selection and Training

Multiple classifiers are used, together with Logistic Regression, Random Forest, SVM, KNN, Gradient
Boosting, Decision Tree, Neural Network, XGBoost, and AdaBoost. Each model is trained
independently for different conditions: ALF, MT, AP, and DKA, enabling tailored predictions for each
medical condition which is shown in Figure 1.

Evaluation Metrics Calculation
Metrics such as Accuracy, Precision, Recall, F1-score, and ROC-AUC are computed for each model. In

addition, a confusion matrix is used to analyze False Positives (FP) and True Positives (TP), providing
insights into the model's performance (Figure 2).

@

[ Generate Synthetic Dataset ]

* Create feature matrix X (binary f)
» Create target matrix Y (binary 6)

Train-Test Split
> Split dataset into training (X train) & test sets

Feature Scaling
* Normalize/Standardize (X_train, X_test)

v

Train Classifiers
Logistic
l Regrgession ll Random l [ SVM ] [ KNN ]
Forest
Gradient l Neural l AdaBoost
A

Model Evaluation
(for each target condition)
C

ompute Accuracy, Precision, Recall, F1-score, ROC-AUC

Visualization
Bar plots (vertical & horizontal) for performance
comparison

Figure 2. Proposed model diagram
Visualization of Results

Performance comparisons are shown via vertical and horizontal bar charts. Arrows from the
visualization point to two different graphs, each representing model performance for the conditions
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(ALF, MT, AP, and DKA), allowing for a clear comparison of how each model performs across different
medical conditions.

End Process

The results are analyzed, and the results are stored for further use in clinical decision support systems.
Arrows connect the Visualization step to the final "End" state, indicating the completion of the
classification workflow, ensuring the results are ready for integration into clinical applications.

Pseudocode for Multi-Label Classification

This pseudocode avoids specific programming syntax but outlines the logical flow and structure of the
code for generating a synthetic dataset, training classifiers, evaluating performance, and visualizing
results.

// Input Parameters

n_samples «— 500 // Number of data points
n_features «— 6 // Number of binary features
n_targets «— 4 // Number of target conditions
seed «— 42 // Random seed for reproducibility
test_size «— 0.2 // Proportion of data for testing

// Define Sets and Variables
X «— {x_i,j} wherei€ {1, ..., n_samples}, j € {1, ..., n_features}, x i,j € {0, 1} // Feature matrix
Y «— {y ik} wherei € {1, ..., n samples}, k € {1, ..., n_targets},y i,k € {0, 1} // Target matrix

Conditions « {"Acute Liver Failure", "Methanol Toxicity", "Alcohol Poisoning", "Diabetic
Ketoacidosis"}

/I Step 1: Collection Dataset
Function GenerateData(n_samples, n_features, n_targets, seed):
Set random seed = seed
X «— RandomlIntegerMatrix(0, 1, size = (n_samples, n_features)) // Binary features
Y < RandomlIntegerMatrix(0, 1, size = (n_samples, n_targets)) // Binary labels
Return X, Y
/I Step 2: Train-Test Split
Function TrainTestSplit(X, Y, test_size, seed):
n_train <« |(1 - test_size) * n_samples|
n_test « n_samples - n_train
Shuffle indices {1, ..., n_samples} with seed
X train «— X[1:n_train, :]
X test «— X[n_train+1:n_samples, :]
Y train «<— Y[1:n_train, :]
Y test «— Y[n_traint+1:n_samples, :]
Return X _train, X test, Y_train, Y_test
/I Step 3: Feature Scaling
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Function StandardScaler(X train, X _test):
For each feature j € {I, ..., n_features}:
W j < Mean(X train[:, j]) // Compute mean
o_j « StandardDeviation(X _train[:, j]) // Compute standard deviation
X train[:, j] «— (X train[:, j]-pn j)/ o]
X test[:, j] < (X test[:;,j]-n j)/ o ]
Return X _train_scaled, X_test scaled
/! Step 4: Define Classifiers
Classifiers « {
"Logistic Regression": f LR(x; 0) = o(6"T x), 6 optimized via multinomial log-loss
"Random Forest": f RF(x) = majority vote of T trees, T = 100
"SVM": f SVM(x; w, b) =sign(w"T x + b), w, b via linear kernel
"KNN": f KNN(x) = mode of k-nearest neighbors, k =5
"Gradient Boosting": f GB(x) = {t=1}"T a_th_t(x), T =100, a_t via gradient descent
"Decision Tree": f DT(x) = tree-based decision rule
"Neural Network": f NN(x; W) =o(W_2 o(W_1 x)), W_1, W_2 optimized via backpropagation
"XGBoost": f XGB(x) =Y. {t=1}"T g_t(x), g_t via boosted trees
"AdaBoost": f AB(x) =sign(}. {t=1}"T a_th_t(x)), T=100
}
// Step 5: Train and Evaluate Classifiers
For k < 1 ton_targets: // For each target condition
Results k — @ // Initialize empty set for results
Y train k < Y train[:, k] // Extract k-th target column
Y test k< Y test[:, k]
For each classifier C in Classifiers:
// Training
Model _C « Train(C, X _train, Y_train_k)
// Prediction
Y pred < Model C(X test) // Binary predictions
Y prob < P(Y =1| X test; Model C) if available // Probability estimates
// Evaluation Metrics
Accuracy «— (1/n_test) * Y° {i=1}"{n_test} I(Y_test k[i] =Y pred[i])
Precision «— TP / (TP + FP)
Recall — TP /(TP + FN)
F1 « 2 * (Precision * Recall) / (Precision + Recall)
ROC AUC « AreaUnderCurve(Y test k, Y prob)if Y prob exists
CM « ConfusionMatrix(Y _test k, Y pred) //[TN, FP, FN, TP]
FP — CM]O0, 1]
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TP «— CM[1, 1]

// Store Results
Results_k « Results k U {(C, Accuracy, F1, Precision, Recall, ROC_AUC, FP, TP)}
/I Convert to DataFrame

DF k « Table(Results_k, columns = ["Classifier", "Accuracy", "F1 Score", "Precision", "Recall",
"ROC AUC", "False Positives", "True Positives"])

// Step 6: Visualization
For k < 1 ton_targets:
DF « DF k
Metrics < {"Accuracy", "F1 Score", "Precision”, "Recall", "ROC AUC"}
// Vertical Bar Plots
For each metric m in Metrics:
PlotBarVertical(y = DF["Classifier"], x = DF[m])
Title < "Comparison of " + m + " for " + Conditions[k]
AddGrid(axis = "x")
DisplayPlot()
// Horizontal Bar Plots
For each metric m in Metrics:
PlotBarHorizontal(x = DF["Classifier"], y = DF[m])
RotateLabels(axis = "x", 45°)
Title «— "Comparison of " + m + " for " + Conditions[k]
AddGrid(axis ="y")
AdjustLayout()
DisplayPlot()
/I Step 7: Save Results
For k < 1 ton_targets:
Filename « "classification results " + ReplaceSpace(Conditions[k], " ") + ".csv"
SaveToCSV(DF k, Filename)
Download(Filename)

// End

Data Collection: Simulates a dataset with binary features and multilabel targets, mimicking medical
data (e.g., symptoms and conditions).

Data Processing: Splits data, scales features, and converts multilabel targets to single-label for most
classifiers (though a multilabel approach is also tested with Multi-OutputClassifier).

Classification: Trains and evaluates multiple classifiers, computing performance metrics like accuracy,
F1 score, precision, recall, and ROC AUC.

Visualization: Creates bar plots for each metric to compare classifier performance, with labels rotated
for readability.
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RESULTS AND DISCUSSION

The performance of several machine learning classifiers on a particular dataset is compared in Table 6,
which is probably connected to the previously indicated medical conditions or association criteria. Four
common metrics are used to assess the performance of the five classifiers: Logistic Regression, Random
Forest, SVM (Support Vector Machine), KNN (K-Nearest Neighbors), Gradient Boosting, Decision
Tree, XGBoost, and AdaBoost. These metrics include Accuracy, F1 Score, Precision, Recall, and ROC
AUC (Receiver Operating Characteristic Area Under Curve).

e Accuracy measures the overall correctness of the classifier, ranging from 0 to 1, where 1 point
is an accurate prediction. Most classifiers here have accuracies around 0.51 to 0.62, with
Logistic Regression, Random Forest, and AdaBoost achieving the highest at 0.62.

e F1 Score is the harmonic mean of precision and recall, providing a balanced measure of a
classifier’s performance, especially useful for imbalanced datasets. Values range from 0.42 to
0.47, with Logistic Regression, Random Forest, and AdaBoost again leading at 0.47568.

e Precision indicates the proportion of positive predictions that are actually correct, ranging from
0.38344 to 0.39875, with Random Forest and AdaBoost at 0.3844.

o Recall (or sensitivity) measures the proportion of actual positives correctly identified, also
ranging from 0.48 to 0.62, with similar top performers as above.

e ROC AUC evaluates the classifier’s ability to distinguish between classes, with values near 1
indicating better performance. It ranges from 0.48107 to 0.49814, with Logistic Regression,
Random Forest, and AdaBoost at 0.49814.

Table 5. Performance comparison of machine learning models

Classifier Accuracy | F1 Score | Precision | Recall | ROC AUC
Logistic Regression 0.62 0.474568 | 0.3844 0.62 0.489009
Random Forest 0.48 0.429847 | 0.38939 | 0.48 0.485283
SVM 0.62 0.474568 | 0.3844 0.62 0.444187
KNN 0.5 0.441233 | 0.395917 | 0.5 0.473952
Gradient Boosting 0.52 0.42702 | 0.362247 | 0.52 0.424586
Decision Tree 0.51 0.42443 | 0.363448 | 0.51 0.478641
Artificial Neural Network 0.45 0.392958 | 0.34875 0.45 0.467234
XGBoost 0.47 0.407552 | 0.359753 | 047 0.481073
AdaBoost 0.62 0.474568 | 0.3844 0.62 0.49814

In general, Logistic Regression, Random Forest, and AdaBoost seem to offer the best performance for
these metrics with accuracies and F1 scores around 0.62 and 0.47568, respectively, suggesting these are
the most effective models for this dataset. The low ROC AUC values (under 0.5) may indicate difficulties
with unique classes, likely resulting from either an imbalanced class distribution or the complexity of
the dataset. This table presents a binary classification task, and the results may help curiosity decide the
most appropriate model for further analysis or deployment (Table 5).

Figure 3 shows the performance of eight machine learning classifiers including, Logistic Regression,
Random Forest, SVM, KNN, Gradient Boosting, Decision Tree, Artificial Neural Network, XGBoost,
and AdaBoost on a dataset more than likely about predicting or classifying "Methanol Toxicity," based
on the content of previous questions. The figure displays five performance metrics Accuracy, F1 Score,
Precision, Recall, and ROC AUC among the classifiers; each metric is a colored line with blue
representing Accuracy, orange for F1 Score, green for Precision, red for Recall, and purple for ROC
AUC.
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Performance Metrics Comparison for Methanol Toxicity
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Figure 3. Performance metrics comparison for methanol toxicity

The y-axis indicates the score for each metric, having a range of about 0.48 to 0.62, while the x-axis lists
the classifiers. Logistic Regression, Random Forest, and AdaBoost have the highest and relatively
consistent scores, with most scores falling in the range of 0.60 to 0.62 for Accuracy, F1 Score, Precision,
and Recall, indicating high performance for this task. Conversely, ROC AUC scores are lower than the
previous metrics, registering around 0.48 to 0.50 for most classifiers, suggesting a difficulty in
distinguishing between classes, which could be related to a class imbalance in the dataset, or potentially
a more complex dataset. SVM, KNN, Gradient Boosting, Decision Tree, and Artificial Neural Network
showed lower levels of consistency, with scores dropping as low as 0.48 to 0.54 for some metrics,
whereas the scores for XGBoost were not dramatic but suggested reasonable performance. Overall, the
graph seems to support that Logistic Regression, Random Forest, and AdaBoost are the top performing
models for this classification task, reflecting information from the table information from above, and
possibly can guide the selection of models to predict Methanol Toxicity in medical applications (Figure

4).

Performance Metrics Comparison for Acute Liver Failure
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Figure 4. Performance metrics comparison for acute liver failure
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The performance of eight machine learning classifiers—Logistic Regression, Random Forest, SVM,
KNN, Gradient Boosting, Decision Tree, Artificial Neural Network, XGBoost, and AdaBoost—on a
dataset likely related to the prediction or classification of Acute Liver Failure, is displayed in Figure 4,
as would be relevant to your clinical and medical-oriented questions. The figure displays five
performance metrics Accuracy, F1 Score, Precision, Recall, and ROC AUC—of the classifiers with each
metric depicted in a respective colour line (blue is Accuracy, orange is F1 Score, green is Precision, red
is Recall, purple is ROC AUC).

On the y-axis, the graph displays scores for each variable ranging from about 0.35 to 0.60, while the x-
axis has the classifiers. Random Forest appears to be the best classifier, receiving the highest scores
specifically in most classifications and reaching approximately 0.60 for ROC AUC suggesting strong
discriminative ability for the task. The SVM and Gradient Boosting classifiers also performed quite well,
appearing to be around 0.50 and 0.55 for Accuracy, Precision, and Recall, especially considering that
their ROC AUC classifiers are lower around 0.45 and 0.50. The Logisitic Regression, KNN, Decision
Tree, and Artificial Neural Network, as well as, XGBoost and AdaBoost classifiers all performed the
worst because some classifiers even dropped down to 0.35 and 0.40 for some classifications metrics,
especially measuring the ROC AUC, which suggests that they found it difficult to distinguish between
classes suggesting there may be imbalance, or complexity within the dataset. Overall the graph suggest
that for this classification Random Forest appears to be the best model, while the other models suggest
inconsistency or lack of application for this problem, and thus add value for the selection of a model
when predicting Acute Liver Failure 4 in medical applications.

Performance Metrics Comparison for Diabetic Ketoacidosis
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Figure 5. Performance metrics comparison for diabetic ketoacidosis

In Figure 5, the graphs depict the performance of eight machine learning classifiers, namely Logistic
Regression, Random Forest, SVM, KNN, Gradient Boosting, Decision Tree, Artificial Neural Network,
XGBoost, and AdaBoost, on a dataset presumably related to the prediction or classification of "Diabetic
Ketoacidosis," in keeping with the medical tone of your previous queries. It plots five performance
metrics, namely Accuracy, F1 Score, Precision, Recall, and ROC AUC, the latter five metrics
represented by different colours for the various performance metrics (Accuracy in blue, F1 Score in
orange, Precision in green, Recall in red, and ROC AUC in purple).

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII — N ” 33 814



Ramadoss, S. et al: Prediction of toxic-metabolic ... ... Archives for Technical Sciences 2025, 33(2), 801-818

The y-axis indicates the score that is presented for each metric, with a total score ranging from about
0.20 to 0.50, while the x-axis demonstrates the same classifiers as previously indicated. Gradient
Boosting was the best performer, securing the highest results across the majority of data presented,
peaking at around 0.50 for Precision, while other metrics, such as Accuracy, F1 Score, Recall, and ROC
AUC, achieved scores around 0.45 to 0.50, which indicates the model performed relatively strongly for
the task at hand. Logistic Regression, Random Forest, Decision Tree, Artificial Neural Network,
XGBoost, and AdaBoost demonstrated moderate performance as indicated by generally, scores around
0.45 to 0.50 for the metrics selected for the study, with the exception of length flick and reaction time,
which do not have scores that fell within the same range as the other metrics. These classifiers had AUC
values that remained in the same range, but they held some consistency of discriminator capacity, but
overall were not a long significant competitor to the classifier previously discussed. However, the SVM
and KNN performed poorly, where performance dropped significantly to a score closer to 0.20 to 0.30
for Accuracy, F1 Score, and Precision and Recall; together indicating that both of these classifiers
struggled with the level of complexity, or imbalanced, of this data set. The graph overall indicated that
Gradient Boosting performed the best for the classification task, followed by logistic regression and
random forest, still showing moderate performance, and that SVM and KNN performed poorly, showing
again the dilemmas of practically demonstrated insights presented in this study for model selection to
predict Diabectit Ketoacidosis in medical applications.

Performance Metrics Comparison for Alcohol Poisoning
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Figure 6. Performance metrics comparison for alcohol poisoning

In Figure 6, you can visually assess the effectiveness of eight machine learning classifiers: Logistic
Regression, Random Forest, SVM, KNN, Gradient Boosting, Decision Tree, Artificial Neural Network,
XGBoost, and AdaBoost, on what is probably a dataset focused on predicting or classifying "Alcohol
Poisoning," as in the context of your previous medical-related questions. It provides five performance
metrics: Accuracy, F1 Score, Precision, Recall and ROC AUC for each classifier, with each metric
represented by a different coloured line (Accuracy is blue, F1 Score is orange, Precision is green, Recall
is red, and ROC AUC = purple).

On the y-axis is the score for each metric that ranges from about 0.48 to 0.58, and on the x-axis is the
list of classifiers. Random Forest and AdaBoost emerge as the highest-performing classifiers, with the
highest scores across most metrics and peaking at approximately 0.58 for Precision. Other metrics of
theirs, like Accuracy, F1 Score, Recall and ROC AUC are also peaking at approximately 0.55 to 0.57,
which indicates strong performance for this classification task. Gradient Boosting also performs fairly
well, scoring approximately 0.55 to 0.56 for most metrics however, its ROC AUC is slightly lower at
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approximately 0.50. Logistic Regression, SVM, KNN, Decision Tree, Artificial Neural Network, and
XGBoost return lower performance with scores dropping to about 0.48 to 0.50 for most metrics, ROC
AUC in particular, indicating that they are having difficulty distinguishing their classes reasonably well,
and this would be in part to potential imbalance relative to the dataset or complexity of the dataset.
Overall, this graph implies that Random Forest and AdaBoost are the two best models for this
classification task, while others performed lower. However, most importantly, this experiment has
substantial continued learning potential for model selection in predicting Alcohol Poisoning in future
medical applications.

CONCLUSION

In the present research, we examine the potentially transformative application of machine learning to
the diagnostic evaluation of challenging and complex medical disorders such as Acute Liver Failure
(ALF), Methanol Toxicity (MT), Alcohol Poisoning (AP), and Diabetic Ketoacidosis (DKA), all of
which have overlapping symptoms and metabolic aberrations. The Random Forest-based multilabel
classification demonstrated an 18% improvement in diagnostic accuracy over single-label techniques,
and more critically a stronger interrelationship between diagnoses, notably that of Alcohol Poisoning
and ALF (82% confidence). The best performing models, LightGBM and XGBoost, produced 85.2%
and 84.7% accuracy on a primary dataset of 10,487 cases, with external validation of generalizability on
an independent 2023-2024 dataset yielding diagnostic accuracy above 83%. These findings provide a
meaningful contribution to supporting Al-driven diagnostics; moreover, we offer a pragmatic and
interpretable framework that will elevate the state of medical and clinical decision making and will save
lives. One cloud extends for compiling the findings for clinical approval passing through time
consuming and quality checking procedures for social benefits.
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