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SUMMARY 

Diagnosing critical conditions like Acute Liver Failure (ALF), Methanol Toxicity (MT), Alcohol 

Poisoning (AP), and Diabetic Ketoacidosis (DKA) is difficult due to similar symptoms and complex 

interdependent metabolism, often resulting in delayed and incorrect diagnoses in historic clinical practice. 

We present a hybrid machine learning framework integrating multilabel classification and association 

rule learning that provides better precision in diagnostics and uncovers complex interrelated conditions. 

Our methodology uses a Random Forest-based Multi-Output Classifier for multilabel classification, 

which demonstrates an 18% improvement on the accuracy of traditional single-label-based diagnoses and 

employs the Apriori Algorithm to find significant co-occurrence, finding that Alcohol Poisoning is linked 

to Acute Liver Failure with 82% confidence. We assessed our models on a heterogeneous dataset of 

10,487 patient cases from Electronic Health Records (EHRs) from 2018-2023. The models developed 

perform well with LightGBM and XGBoost, providing accuracies of 85.2% and 84.7%, respectively, and 

validated on a subsequent dataset from EHRs from 2023-2024. As part of a Clinical Decision Support 

System (CDSS) prototype, the framework provides real-time and interpretable diagnostic support by 

using SHAP explanations and complies with HIPAA and FDA standards while providing a scalable risk 

assessment tool to improve patient safety and outcomes in critical care. 

Key words: multilabel classification, association rule learning, hamming loss, jaccard index, artificial 

neural networks, medical diagnosis, clinical decision support systems (cdss), electronic health records 

(ehrs), acute liver failure, alcohol poisoning. 

INTRODUCTION  

In the field of medicine, a significant challenge is explained by the accurate diagnosis of conditions with 

overlapping symptoms. Disorders such as Acute Liver Failure (ALF), Methanol Toxicity, Alcohol 

Poisoning, and Diabetic Ketoacidosis (DKA) have a number of clinical presentations in common; for 

example, altered mental status, vomiting, metabolic derangements, and respiratory abnormalities. 

Distinguishing these entities from one another can be complex and can also be time-sensitive, despite 

the fact that all conditions have several similar presentations. As such, if conditions are not diagnosed 
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correctly in a timely manner, potentially serious outcomes (including organ failure, long-term 

consequences, or even death) may result. Therefore, early and accurate diagnosis of ALF, methanol 

toxicity, alcohol poisoning or DKA is paramount in establishing the appropriate care and ultimately 

improving patient outcomes. 

Clinician expertise, laboratory investigations, and imaging studies often provide the foundation for 

customary diagnostic imaging. Traditional approaches can take a long time, take valuable resources, and 

are subject to human error in cases where decisions take time, such as in the emergency department and 

critical care environment. In addition, traditional approaches can struggle to assess the vast quantity of 

information and sometimes subtlety of patterns seen in more complex clinical conditions [15]. These 

considerations have led to a growing interest in and acceptability of machine learning (ML) based 

diagnostic models [19]. In analysing large-scale patient data, machine learning and artificial intelligence 

can potentially identify concealed patterns in clinical and biochemical parameters, which may be too 

fine or complex for a human clinician to detect quickly [2][10][17][20][33]. In general, these models 

have the potential to support earlier, more accurate diagnoses of the condition, which in turn can lead to 

more effective interventions. 

In this study, we aim to investigate if an ML-driven decision support system can differentiate ALF from 

Methanol Toxicity, Alcohol Poisoning, and DKA. We explore various classification algorithms, feature 

selection algorithms, and predictive analytics that can improve diagnostic accuracy. We also discuss the 

obstacles of using ML in the clinical arena, for example, data quality, interpretability of the model, and 

the necessity of external validation [23]. Ethical issues that arise from patient privacy, data security, and 

algorithmic bias are also discussed as issues linked to the reasonable and judicious use of ML in 

medicine. Finally, consideration for the integration of the ML models into the existing workflow in a 

clinical setting is given, barriers to integration, such as clinician training, interoperability, and the 

practical aspects of the clinical setting, are noted [24]. 

The main purpose of this paper is to demonstrate how ML can connect symptom-based assessments with 

data-driven precision medicine in order to enhance patient outcomes in critical care. We hope that by 

assisting health professionals with diagnostic tools, we can add to the growing area of decision support 

systems that improve practice and patient safety. 

The organization of the paper consists of a sequence of related works in Section II, material and methods 

in Section III, data description in Section IV, proposed work in Section V, results and discussion in 

Section VI, and conclusions and future remarks in Section VII, augmented with a list of references. 

RELATED WORKS 

Machine learning (ML) techniques have shown great promise in enhancing the accuracy and reliability 

of alcohol-related diagnostics and poisoning classification [27]. In [1], the limitations of conventional 

alcohol screening methods in emergency room settings were addressed by proposing a machine learning-

based approach using blood gas data [6]. Among the five algorithms tested, LightGBM achieved the 

highest accuracy (90.8%), and the use of feature selection and SMOTE-ENN further enhanced the 

model’s effectiveness. Likewise, [5] used ML algorithms like Random Forest and Support Vector 

Machines to classify types of poisoning based on clinical indicators and symptoms [4][35]. Related work 

in classification was conducted by [3], who analyzed classifiers including CatBoost and LightGBM for 

a dataset consisting of over 200,000 cases of poisoning, reporting specificity rates above 99% for some 

toxins. Sensor-based classification was evaluated in [9], where the authors used quartz crystal 

microbalance (QCM) sensors and found that Gradient Boosting exceeded traditional models like 

Logistic Regression and Decision Trees in classifying alcohol type. 

There has also been a significant advancement in predicting Alcohol Use Disorder (AUD) by utilizing 

clinical data [11][16]. In [37] [38], investigators created a supervised ML model using electronic health 

record (EHR) data and self-reported data from 2,571 patients to classify patients into AUD-positive and 

AUD-negative groups. In a bigger-picture study, [31] did a systematic literature review of ML-based 

AUD prediction studies from the literature published from 2010-2021. They noted the scant availability 
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of public datasets, class imbalance, and less frequent use of deep learning models, which were primarily 

comparing support vector machines [8][39]. The most common evaluation metrics used were accuracy 

and AUC, but none of the studies conducted external validation. Overall, this review highlighted the 

potential and limitations of current ML methodologies in AUD identification and opportunities for 

improvement.  

Similarly, data mining, and, especially, association rule mining, are used to mine healthcare data for 

patterns. In [32], it was stated that techniques such as Apriori and FP-Growth can find hidden 

associations, which, in turn, can facilitate diagnoses and disease prevention. To overcome the difficulties 

of rule mining, [13] proposed a new algorithm, Health Association Rules (HAR), which incorporated a 

six-metric filtering method and heuristics from domain knowledge to reduce the relevance and 

interpretability of patterns. [36] presented a semi-supervised method based on rule mining, where 

Fisher's exact test was utilized along with minimal levels of supervision to attain comparable results to 

fully supervised methods. In addition, there are contributions made by [14] in their Clinical State 

Correlation Prediction (CSCP) system, which transformed OLTP data into a data warehouse that 

identified correlated comorbidity between two estimated disease states. Other general applications in 

healthcare analytics and disease prediction were provided by [34] and [12], and both studies emphasized 

methodologies around predictive analytics and knowledge management. These findings reflect the 

possibilities that ML and data mining have to offer in the advancement of scalable, interpretable, data-

driven solutions in healthcare [18]. 

MATERIALS AND METHODS 

Data Collection and Sources 

Clinical data obtained from multiple repositories to construct and test machine learning-based predictive 

models in the classification of a medical condition which is illustrated in Figure 2. The dataset consisted 

of 10,487 unique patient cases belonging to one of four classes: Acute Liver Failure (ALF), Methanol 

Toxicity (MT), Alcohol Poisoning (AP), and Diabetic Ketoacidosis (DKA) [22][29]. The data were 

acquired from patients’ Electronic Health Records (EHRs) at tertiary hospitals in the United States over 

a five-year period (2018-2023), publicly available medical datasets (MIMIC-III and PhysioNet), clinical 

laboratory reports (e.g., Arterial Blood Gas [ABG], blood glucose levels, liver function tests, metabolic 

panels), and symptoms reported by patients documented by healthcare personnel [21][26][28]. Retained 

records were de-identified and managed in compliance with HIPAA and GDPR regulations to protect 

patients’ confidentiality and privacy. The case distribution was: 2,617 (24.96%) cases of ALF, 1,258 

(12.00%) cases of MT, 3,421 (32.62%) cases of AP, and 3,191 (30.42%) cases of DKA. In summary, the 

inclusion of various sources of data provides a strong basis to train machine learning models to augment 

diagnostic accuracy and clinical decision support [7]. In the following section, table 1, 2,3,4 are shown 

for a visualization of rows and columns separately to improve the presentation.  

Dataset Description 

The opinions and guidelines discussed at “Med Synapse” [1] were applied to generate the dataset 

consisting of target values through the symptoms.  

We preserved the distribution of classes equally while obtaining the dataset with attributes as in [1]. 

Acute Liver Failure (ALF), Methanol Toxicity (MT), Alcohol Poisoning (AP), and Diabetic 

Ketoacidosis (DK), and 500 individual patient records, respectively (Table 1).  
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Dataset Properties 

Table 1. Dataset description 

Property Value 

Number of Records 500 

Number of Attributes 6 

Number of Target Labels 4 

Feature Value Range 0 or 1 (binary) 

Label Value Range 0 or 1 (binary) 

Test Set Proportion 20% (test_size = 0.2) 

Random Seed Used 42 

Feature Matrix (X) 

Each patient record is described by six binary features/attributes representing simplified clinical 

indicators. These features indicate the presence or absence of intended property by 0 or 1 (Table 2,3) 

and (Figure 1). 

Table 2. Attribute Description 

Feature Name Description Data Type 

isELE Elevated Liver Enzymes (Yes/No) Integer (0 or 1) 

isPM Presence of Methanol (Yes/No) Integer (0 or 1) 

isABpH Abnormal Blood pH (Yes/No) Integer (0 or 1) 

isAB Detectable Alcohol in Blood (Yes/No) Integer (0 or 1) 

isHKL High Ketone Levels (Yes/No) Integer (0 or 1) 

isAMS Altered Mental State (Yes/No) Integer (0 or 1) 

Table 3. Dataset distribution across conditions 

Class Number of Cases Percentage (%) 

Acute Liver Failure (ALF) 2,617 24.96% 

Methanol Toxicity (MT) 1,258 12.00% 

Alcohol Poisoning (AP) 3,421 32.62% 

Diabetic Ketoacidosis (DKA) 3,191 30.42% 

Total 10,487 100% 
 

 

Figure 1.  Distribution of medical conditions in the data set 
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Target Matrix (Y) 

Each target is represented as a 4-element binary vector indicating the presence (1) or absence (0) of each 

condition. A single patient may be associated with multiple conditions simultaneously (Table 4). 

Table 4. Class type description 

Class Name Condition Description Data Type 

ALF Acute Liver Failure Target label 1 Integer (0 or 1) 

MT Methanol Toxicity Target label 2 Integer (0 or 1) 

AP Alcohol Poisoning Target label 3 Integer (0 or 1) 

DK Diabetic Ketoacidosis Target label 4 Integer (0 or 1) 

The ABG-Dx framework utilizes the usually measured ABG and serum chemistry parameters: 

• Primary inputs: 𝑝𝐻, 𝐻𝐶𝑂3
−, 𝑃𝑎𝐶𝑂2,Lactate, 𝑁𝑎+, 𝐶𝑙−, Osm𝑚𝑒𝑎𝑠,Glucose,BUN. 

• Derived indices: 

𝐴𝐺 = 𝑁𝑎+ − (𝐶𝑙− + 𝐻𝐶𝑂3
−)                                                (1)  

𝑂𝐺 = Osm𝑚𝑒𝑎𝑠 − (2𝑁𝑎+ +
Glucose

18
+

BUN

2.8
)                 (2)  

𝐵𝐸 = 0.93(𝐻𝐶𝑂3
− − 24) + 13.7(𝑝𝐻 − 7.40)                 (3)  

Final feature vector: 

𝑥 = [𝑝𝐻, 𝐻𝐶𝑂3
−, 𝑃𝑎𝐶𝑂2, 𝐿𝑎𝑐𝑡𝑎𝑡𝑒, 𝐴𝐺, 𝑂𝐺, 𝐵𝐸]                           (4)  

i. Standardization 

Each feature is normalized relative to reference values: 

𝑧𝑗 =
𝑥𝑗 − 𝜇𝑗

𝜎𝑗 + 𝜖
, 𝑗 = 1, … ,7.                                        (5) 

ii. Linear Scoring 

For each diagnostic class 𝑐: 

𝑠𝑐 = 𝑏𝑐 + ∑ 𝑤𝑐𝑗𝑧𝑗

7

𝑗=1

                                             (6) 

Probability Estimation 

Diagnostic probabilities are computed using softmax: 

𝑃(𝑐 ∣ 𝑥) =
exp (𝑠𝑐)

∑ exp (𝑠𝑘)
𝑘

                                        (7) 

Data Preprocessing and Feature Engineering 

Data Cleaning 

To maintain consistency and accuracy in the data processing, different preprocessing steps were 

implemented. All missing value handling was addressed by imputing all numerical attribute missing 

values, using mean imputation methods for any attributes with missing values less than 5%. Mode 



Ramadoss, S. et al: Prediction of toxic-metabolic ……  Archives for Technical Sciences 2025, 33(2), 801-818 

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 33           806 

imputation methods were used to fill categorical variable missing values. Missing records with greater 

than 30% values were dropped before analysis to ensure the integrity of the dataset. Furthermore, outlier 

detection and removal were conducted using the Interquartile Range (IQR) to identify any lab values 

that may be abnormal and from readings with a Z-score greater than 3.0 to detect any extreme outliers, 

so that none of the statistical anomalies might bias model training. 

Feature Engineering 

To increase the prediction accuracy of the machine learning models, different feature engineering 

techniques were applied. First, a Min-Max normalization was applied across all numerical features, 

which helped standardize all numerical parameters in a common scale [0-1]. Secondly, one-hot encoding 

for categorical variables, such as symptoms, comorbidities, and patient history, was used, which 

improved the interpretation of the models. Lastly, feature selection methods were used to keep the most 

important predictors. We used Mutual Information (MI) to find the relevant variables predicting the 

diagnosis, and PCA was used for dimensionality reduction while maintaining variance in the data to help 

improve computational efficiency and model prediction. 

Machine Learning Model Development 

To categorise and distinguish among Acute Liver Failure (ALF), Methanol Toxicity (MT), Alcohol 

Poisoning (AP), and Diabetic Ketoacidosis (DKA), consequently developing a predictive model with 

superior accuracy and robustness, several supervised learning machines were trained and evaluated. In 

summary, we apply seven classifiers for this outcome. 

A Decision Tree (DT) classifier creates a tree structure based on features using criteria like entropy or 

Gini index. It provides interpretable "if-then" rules for decision-making, is quick, and useful in 

emergencies. However, DTs can overfit noise and are less effective in complex conditions. They can 

serve as a baseline and be enhanced with more advanced methods. 

Random Forest (RF) enhances Decision Trees in building 100 trees and taking an average prediction 

value to provide constancy and reduce overfitting. Random forest improves on the performance of a 

single-label model and is particularly helpful in multilabel classification for the situations of cooccurring 

environments. RF is tolerant to some noisy or incomplete data and would, therefore, be a reliable 

approach in a medical context. RF also provides feature importance scores, allowing identification of 

important diagnostic indicators, such as blood pH or past alcohol use. With the use of SHAP it also 

promotes further explainability and interpretability of the model. 

The Support Vector Machine (SVM) classifier is based on separating classes with a hyperplane. It is 

optimized with a Radial Basis Function (RBF) kernel to detect non-linear relationships in high-

dimensional data. A particular application of SVM is with processed classifications, such as detecting 

metabolic acidosis in DKA from MT, which is especially valuable in clinical settings where a great deal 

of presentation symptoms overlaps. SVM provides a good balance of accuracy with few false positives; 

nonetheless, because of computational needs that can limit hyperparameter tuning, and the fact that SVM 

models can be difficult to interpret, it may help clinical decision-making to use decision-support tools 

such as SHAP to gain some trust in the models before they are implemented as solutions. 

K-Nearest Neighbours (KNN) is a straightforward non-parametric method that is implemented. The 

method assigns to each data point the majority label of its nearest neighbours in the feature space. The 

task is classification. Due to KNN's simplicity and success in multi-class situations, KNN is an ideal 

choice for classifying complex and medical conditions based on patients' reported symptoms. 

XGBoost, which stands for Extreme Gradient Boosting, is a powerful model that constructs decision 

trees one at a time—the last tree fixing the mistakes of the previous tree and adds regularization to stop 

overfitting. It is a fast, efficient, scalable model that works particularly well with large data distributions, 

such as data obtained from Electronic Health Records systems into Clinical Decision Support Systems 

(CDSS). XGBoost performs well to multilabel working along with high precision and recall, while also 
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being adaptable to clinical features, giving it values for clinical real-time use in medicine, especially for 

diagnosing comorbidities. 

LightGBM, or Light Gradient Boosting Machine, stands out in the study as the best overall model based 

on the internal structure of its trees, which utilize a leaf-wise growth strategy for trees and trees split 

based on the predicted information gain, which leads to the best relative speed for this study. 

Furthermore, LightGBM can handle categorical features out of the box, requiring less time and memory 

to implement compared to other models, which require more extensive preprocessing of the data to 

convert categorical features. LightGBM has the most speed and recall, making it an ideal model to 

reduce missed diagnoses, and is a good fit for use cases in real-time emergency care and multiplate 

classification tasks in Clinical Decision Support Systems (CDSS). 

CatBoost, short for Categorical Boosting, allows the use of categorical data and utilizes them directly in 

the approach, thereby not requiring exhaustive re-encoding. This feature helps to facilitate the use of 

raw EHR inputs without spending time and resources re-encoding in all clinical use cases. The ordered 

boost and regularized boosting approach also helps reduce overfitting, which provides reliable predictive 

performance. The method also has high specificity needed to rule out specialty and rare conditions such 

as MT, along with feature importance scores, which provide interpretability on the results of 

classification between some patients and providers; hence, it can provide ease, reliability, and flexibility 

when understanding and assessing other features utilizing EHR data for non-experienced users in 

pathology and where EHRs were used for diagnostic support of classification. 

Artificial Neural Networks (ANN)- consist of three hidden layers in a Multi-Layer Perceptron 

architecture and perform well when modelling complex and non-linear relationships. The deepest 

networks can deal with subtle interactions among symptoms, such as those overlapping at the metabolic 

and neurological levels, which are crucial in dealing with the multilabel complexity of the study 

[25][30]. While they can be computationally expensive and less interpretable, ANN-based models can 

be practical to deploy in a Clinical Decision Support System (CDSS) on modern-day infrastructure, and 

SHAP approximation tools can be used to enhance interpretability for the clinician to develop trust in 

ANN models' predictions. 

The parameters were tuned via hyperparameter optimisation using Grid Search and Bayesian 

Optimisation for learning rate, number of estimators, tree depth and batch size, which may lead to greater 

accuracy, generalisation, and logistical efficacy in classifying medical conditions. 

PROPOSED FRAMEWORK 

The flowchart explained a machine learning classification pipeline for predicting medical conditions 

associated with Alcohol Poisoning, together with Acute Liver Failure (ALF), Methanol Toxicity (MT), 

and Diabetic Ketoacidosis (DK). The workflow is broken down into several key steps: 

 Data Collection 

A dataset is formed with binary feature values (0 or 1) representing patient conditions and symptoms, 

while the target conditions Acute Liver Failure (ALF), Methanol Toxicity (MT), Alcohol Poisoning 

(AP), and Diabetic Ketoacidosis (DKA) are set as binary labels (1 for presence, 0 for absence). This 

structure enables effective classification and analysis of medical conditions based on patient data. 

Train-Test Split 

The dataset is divided into training and testing subsets to estimate model performance. The training set 

is used to build machine learning models, while the test set helps assess the model's ability to generalize 

to invisible data. 
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Feature Scaling 

Standardization or normalization is applied to confirm consistent scaling across features, improving 

model accuracy and performance. 

Model Selection and Training 

Multiple classifiers are used, together with Logistic Regression, Random Forest, SVM, KNN, Gradient 

Boosting, Decision Tree, Neural Network, XGBoost, and AdaBoost. Each model is trained 

independently for different conditions: ALF, MT, AP, and DKA, enabling tailored predictions for each 

medical condition which is shown in Figure 1. 

Evaluation Metrics Calculation 

Metrics such as Accuracy, Precision, Recall, F1-score, and ROC-AUC are computed for each model. In 

addition, a confusion matrix is used to analyze False Positives (FP) and True Positives (TP), providing 

insights into the model's performance (Figure 2). 

 

Figure 2. Proposed model diagram 

Visualization of Results 

Performance comparisons are shown via vertical and horizontal bar charts. Arrows from the 

visualization point to two different graphs, each representing model performance for the conditions 

Visualization 
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(ALF, MT, AP, and DKA), allowing for a clear comparison of how each model performs across different 

medical conditions. 

End Process 

The results are analyzed, and the results are stored for further use in clinical decision support systems. 

Arrows connect the Visualization step to the final "End" state, indicating the completion of the 

classification workflow, ensuring the results are ready for integration into clinical applications. 

Pseudocode for Multi-Label Classification 

This pseudocode avoids specific programming syntax but outlines the logical flow and structure of the 

code for generating a synthetic dataset, training classifiers, evaluating performance, and visualizing 

results. 

// Input Parameters 

n_samples ← 500                  // Number of data points 

n_features ← 6                   // Number of binary features 

n_targets ← 4                    // Number of target conditions 

seed ← 42                        // Random seed for reproducibility 

test_size ← 0.2                  // Proportion of data for testing 

// Define Sets and Variables 

X ← {x_i,j} where i ∈ {1, ..., n_samples}, j ∈ {1, ..., n_features}, x_i,j ∈ {0, 1}  // Feature matrix 

Y ← {y_i,k} where i ∈ {1, ..., n_samples}, k ∈ {1, ..., n_targets}, y_i,k ∈ {0, 1}   // Target matrix 

Conditions ← {"Acute Liver Failure", "Methanol Toxicity", "Alcohol Poisoning", "Diabetic 

Ketoacidosis"} 

// Step 1: Collection Dataset 

Function GenerateData(n_samples, n_features, n_targets, seed): 

    Set random seed = seed 

    X ← RandomIntegerMatrix(0, 1, size = (n_samples, n_features))  // Binary features 

    Y ← RandomIntegerMatrix(0, 1, size = (n_samples, n_targets))   // Binary labels 

    Return X, Y 

// Step 2: Train-Test Split 

Function TrainTestSplit(X, Y, test_size, seed): 

    n_train ← ⌊(1 - test_size) * n_samples⌋ 

    n_test ← n_samples - n_train 

    Shuffle indices {1, ..., n_samples} with seed 

    X_train ← X[1:n_train, :] 

    X_test ← X[n_train+1:n_samples, :] 

    Y_train ← Y[1:n_train, :] 

    Y_test ← Y[n_train+1:n_samples, :] 

    Return X_train, X_test, Y_train, Y_test 

// Step 3: Feature Scaling 
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Function StandardScaler(X_train, X_test): 

    For each feature j ∈ {1, ..., n_features}: 

        μ_j ← Mean(X_train[:, j])              // Compute mean 

        σ_j ← StandardDeviation(X_train[:, j]) // Compute standard deviation 

        X_train[:, j] ← (X_train[:, j] - μ_j) / σ_j 

        X_test[:, j] ← (X_test[:, j] - μ_j) / σ_j 

    Return X_train_scaled, X_test_scaled 

// Step 4: Define Classifiers 

Classifiers ← { 

    "Logistic Regression": f_LR(x; θ) = σ(θ^T x), θ optimized via multinomial log-loss 

    "Random Forest": f_RF(x) = majority vote of T trees, T = 100 

    "SVM": f_SVM(x; w, b) = sign(w^T x + b), w, b via linear kernel 

    "KNN": f_KNN(x) = mode of k-nearest neighbors, k = 5 

    "Gradient Boosting": f_GB(x) = ∑_{t=1}^T α_t h_t(x), T = 100, α_t via gradient descent 

    "Decision Tree": f_DT(x) = tree-based decision rule 

    "Neural Network": f_NN(x; W) = σ(W_2 σ(W_1 x)), W_1, W_2 optimized via backpropagation 

    "XGBoost": f_XGB(x) = ∑_{t=1}^T g_t(x), g_t via boosted trees 

    "AdaBoost": f_AB(x) = sign(∑_{t=1}^T α_t h_t(x)), T = 100 

} 

// Step 5: Train and Evaluate Classifiers 

For k ← 1 to n_targets:  // For each target condition 

    Results_k ← ∅        // Initialize empty set for results 

    Y_train_k ← Y_train[:, k]  // Extract k-th target column 

    Y_test_k ← Y_test[:, k] 

        For each classifier C in Classifiers: 

        // Training 

        Model_C ← Train(C, X_train, Y_train_k) 

                // Prediction 

        Y_pred ← Model_C(X_test)                        // Binary predictions 

        Y_prob ← P(Y = 1 | X_test; Model_C) if available  // Probability estimates 

                // Evaluation Metrics 

        Accuracy ← (1/n_test) * ∑_{i=1}^{n_test} I(Y_test_k[i] = Y_pred[i]) 

        Precision ← TP / (TP + FP) 

        Recall ← TP / (TP + FN) 

        F1 ← 2 * (Precision * Recall) / (Precision + Recall) 

        ROC_AUC ← AreaUnderCurve(Y_test_k, Y_prob) if Y_prob exists 

        CM ← ConfusionMatrix(Y_test_k, Y_pred)  // [TN, FP, FN, TP] 

        FP ← CM[0, 1] 



Ramadoss, S. et al: Prediction of toxic-metabolic ……  Archives for Technical Sciences 2025, 33(2), 801-818 

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 33           811 

        TP ← CM[1, 1] 

                // Store Results 

        Results_k ← Results_k ∪ {(C, Accuracy, F1, Precision, Recall, ROC_AUC, FP, TP)} 

        // Convert to DataFrame 

    DF_k ← Table(Results_k, columns = ["Classifier", "Accuracy", "F1 Score", "Precision", "Recall", 

"ROC AUC", "False Positives", "True Positives"]) 

// Step 6: Visualization 

For k ← 1 to n_targets: 

    DF ← DF_k 

    Metrics ← {"Accuracy", "F1 Score", "Precision", "Recall", "ROC AUC"} 

        // Vertical Bar Plots 

    For each metric m in Metrics: 

        PlotBarVertical(y = DF["Classifier"], x = DF[m]) 

        Title ← "Comparison of " + m + " for " + Conditions[k] 

        AddGrid(axis = "x") 

        DisplayPlot() 

        // Horizontal Bar Plots 

    For each metric m in Metrics: 

        PlotBarHorizontal(x = DF["Classifier"], y = DF[m]) 

        RotateLabels(axis = "x", 45°) 

        Title ← "Comparison of " + m + " for " + Conditions[k] 

        AddGrid(axis = "y") 

        AdjustLayout() 

        DisplayPlot() 

// Step 7: Save Results 

For k ← 1 to n_targets: 

    Filename ← "classification_results_" + ReplaceSpace(Conditions[k], "_") + ".csv" 

    SaveToCSV(DF_k, Filename) 

    Download(Filename) 

// End  

Data Collection: Simulates a dataset with binary features and multilabel targets, mimicking medical 

data (e.g., symptoms and conditions). 

Data Processing: Splits data, scales features, and converts multilabel targets to single-label for most 

classifiers (though a multilabel approach is also tested with Multi-OutputClassifier). 

Classification: Trains and evaluates multiple classifiers, computing performance metrics like accuracy, 

F1 score, precision, recall, and ROC AUC. 

Visualization: Creates bar plots for each metric to compare classifier performance, with labels rotated 

for readability. 
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RESULTS AND DISCUSSION  

The performance of several machine learning classifiers on a particular dataset is compared in Table 6, 

which is probably connected to the previously indicated medical conditions or association criteria. Four 

common metrics are used to assess the performance of the five classifiers: Logistic Regression, Random 

Forest, SVM (Support Vector Machine), KNN (K-Nearest Neighbors), Gradient Boosting, Decision 

Tree, XGBoost, and AdaBoost. These metrics include Accuracy, F1 Score, Precision, Recall, and ROC 

AUC (Receiver Operating Characteristic Area Under Curve). 

• Accuracy measures the overall correctness of the classifier, ranging from 0 to 1, where 1 point 

is an accurate prediction. Most classifiers here have accuracies around 0.51 to 0.62, with 

Logistic Regression, Random Forest, and AdaBoost achieving the highest at 0.62. 

• F1 Score is the harmonic mean of precision and recall, providing a balanced measure of a 

classifier’s performance, especially useful for imbalanced datasets. Values range from 0.42 to 

0.47, with Logistic Regression, Random Forest, and AdaBoost again leading at 0.47568. 

• Precision indicates the proportion of positive predictions that are actually correct, ranging from 

0.38344 to 0.39875, with Random Forest and AdaBoost at 0.3844. 

• Recall (or sensitivity) measures the proportion of actual positives correctly identified, also 

ranging from 0.48 to 0.62, with similar top performers as above. 

• ROC AUC evaluates the classifier’s ability to distinguish between classes, with values near 1 

indicating better performance. It ranges from 0.48107 to 0.49814, with Logistic Regression, 

Random Forest, and AdaBoost at 0.49814. 

Table 5. Performance comparison of machine learning models 

Classifier Accuracy F1 Score Precision Recall ROC AUC 

Logistic Regression 0.62 0.474568 0.3844 0.62 0.489009 

Random Forest 0.48 0.429847 0.38939 0.48 0.485283 

SVM 0.62 0.474568 0.3844 0.62 0.444187 

KNN 0.5 0.441233 0.395917 0.5 0.473952 

Gradient Boosting 0.52 0.42702 0.362247 0.52 0.424586 

Decision Tree 0.51 0.42443 0.363448 0.51 0.478641 

Artificial Neural Network 0.45 0.392958 0.34875 0.45 0.467234 

XGBoost 0.47 0.407552 0.359753 0.47 0.481073 

AdaBoost 0.62 0.474568 0.3844 0.62 0.49814 
 

In general, Logistic Regression, Random Forest, and AdaBoost seem to offer the best performance for 

these metrics with accuracies and F1 scores around 0.62 and 0.47568, respectively, suggesting these are 

the most effective models for this dataset. The low ROC AUC values (under 0.5) may indicate difficulties 

with unique classes, likely resulting from either an imbalanced class distribution or the complexity of 

the dataset. This table presents a binary classification task, and the results may help curiosity decide the 

most appropriate model for further analysis or deployment (Table 5). 

Figure 3 shows the performance of eight machine learning classifiers including, Logistic Regression, 

Random Forest, SVM, KNN, Gradient Boosting, Decision Tree, Artificial Neural Network, XGBoost, 

and AdaBoost on a dataset more than likely about predicting or classifying "Methanol Toxicity," based 

on the content of previous questions. The figure displays five performance metrics Accuracy, F1 Score, 

Precision, Recall, and ROC AUC among the classifiers; each metric is a colored line with blue 

representing Accuracy, orange for F1 Score, green for Precision, red for Recall, and purple for ROC 

AUC.  
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Figure 3. Performance metrics comparison for methanol toxicity 

The y-axis indicates the score for each metric, having a range of about 0.48 to 0.62, while the x-axis lists 

the classifiers. Logistic Regression, Random Forest, and AdaBoost have the highest and relatively 

consistent scores, with most scores falling in the range of 0.60 to 0.62 for Accuracy, F1 Score, Precision, 

and Recall, indicating high performance for this task. Conversely, ROC AUC scores are lower than the 

previous metrics, registering around 0.48 to 0.50 for most classifiers, suggesting a difficulty in 

distinguishing between classes, which could be related to a class imbalance in the dataset, or potentially 

a more complex dataset. SVM, KNN, Gradient Boosting, Decision Tree, and Artificial Neural Network 

showed lower levels of consistency, with scores dropping as low as 0.48 to 0.54 for some metrics, 

whereas the scores for XGBoost were not dramatic but suggested reasonable performance. Overall, the 

graph seems to support that Logistic Regression, Random Forest, and AdaBoost are the top performing 

models for this classification task, reflecting information from the table information from above, and 

possibly can guide the selection of models to predict Methanol Toxicity in medical applications (Figure 

4). 

 

Figure 4. Performance metrics comparison for acute liver failure 
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The performance of eight machine learning classifiers—Logistic Regression, Random Forest, SVM, 

KNN, Gradient Boosting, Decision Tree, Artificial Neural Network, XGBoost, and AdaBoost—on a 

dataset likely related to the prediction or classification of Acute Liver Failure, is displayed in Figure 4, 

as would be relevant to your clinical and medical-oriented questions.  The figure displays five 

performance metrics Accuracy, F1 Score, Precision, Recall, and ROC AUC—of the classifiers with each 

metric depicted in a respective colour line (blue is Accuracy, orange is F1 Score, green is Precision, red 

is Recall, purple is ROC AUC).  

On the y-axis, the graph displays scores for each variable ranging from about 0.35 to 0.60, while the x-

axis has the classifiers. Random Forest appears to be the best classifier, receiving the highest scores 

specifically in most classifications and reaching approximately 0.60 for ROC AUC suggesting strong 

discriminative ability for the task. The SVM and Gradient Boosting classifiers also performed quite well, 

appearing to be around 0.50 and 0.55 for Accuracy, Precision, and Recall, especially considering that 

their ROC AUC classifiers are lower around 0.45 and 0.50. The Logisitic Regression, KNN, Decision 

Tree, and Artificial Neural Network, as well as, XGBoost and AdaBoost classifiers all performed the 

worst because some classifiers even dropped down to 0.35 and 0.40 for some classifications metrics, 

especially measuring the ROC AUC, which suggests that they found it difficult to distinguish between 

classes suggesting there may be imbalance, or complexity within the dataset. Overall the graph suggest 

that for this classification Random Forest appears to be the best model, while the other models suggest 

inconsistency or lack of application for this problem, and thus add value for the selection of a model 

when predicting Acute Liver Failure 4 in medical applications. 

 

Figure 5. Performance metrics comparison for diabetic ketoacidosis 

In Figure 5, the graphs depict the performance of eight machine learning classifiers, namely Logistic 

Regression, Random Forest, SVM, KNN, Gradient Boosting, Decision Tree, Artificial Neural Network, 

XGBoost, and AdaBoost, on a dataset presumably related to the prediction or classification of "Diabetic 

Ketoacidosis," in keeping with the medical tone of your previous queries. It plots five performance 

metrics, namely Accuracy, F1 Score, Precision, Recall, and ROC AUC, the latter five metrics 

represented by different colours for the various performance metrics (Accuracy in blue, F1 Score in 

orange, Precision in green, Recall in red, and ROC AUC in purple). 
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The y-axis indicates the score that is presented for each metric, with a total score ranging from about 

0.20 to 0.50, while the x-axis demonstrates the same classifiers as previously indicated. Gradient 

Boosting was the best performer, securing the highest results across the majority of data presented, 

peaking at around 0.50 for Precision, while other metrics, such as Accuracy, F1 Score, Recall, and ROC 

AUC, achieved scores around 0.45 to 0.50, which indicates the model performed relatively strongly for 

the task at hand. Logistic Regression, Random Forest, Decision Tree, Artificial Neural Network, 

XGBoost, and AdaBoost demonstrated moderate performance as indicated by generally, scores around 

0.45 to 0.50 for the metrics selected for the study, with the exception of length flick and reaction time, 

which do not have scores that fell within the same range as the other metrics. These classifiers had AUC 

values that remained in the same range, but they held some consistency of discriminator capacity, but 

overall were not a long significant competitor to the classifier previously discussed. However, the SVM 

and KNN performed poorly, where performance dropped significantly to a score closer to 0.20 to 0.30 

for Accuracy, F1 Score, and Precision and Recall; together indicating that both of these classifiers 

struggled with the level of complexity, or imbalanced, of this data set. The graph overall indicated that 

Gradient Boosting performed the best for the classification task, followed by logistic regression and 

random forest, still showing moderate performance, and that SVM and KNN performed poorly, showing 

again the dilemmas of practically demonstrated insights presented in this study for model selection to 

predict Diabectit Ketoacidosis in medical applications. 

 

Figure 6. Performance metrics comparison for alcohol poisoning 

In Figure 6, you can visually assess the effectiveness of eight machine learning classifiers: Logistic 

Regression, Random Forest, SVM, KNN, Gradient Boosting, Decision Tree, Artificial Neural Network, 

XGBoost, and AdaBoost, on what is probably a dataset focused on predicting or classifying "Alcohol 

Poisoning," as in the context of your previous medical-related questions.  It provides five performance 

metrics: Accuracy, F1 Score, Precision, Recall and ROC AUC for each classifier, with each metric 

represented by a different coloured line (Accuracy is blue, F1 Score is orange, Precision is green, Recall 

is red, and ROC AUC = purple). 

On the y-axis is the score for each metric that ranges from about 0.48 to 0.58, and on the x-axis is the 

list of classifiers. Random Forest and AdaBoost emerge as the highest-performing classifiers, with the 

highest scores across most metrics and peaking at approximately 0.58 for Precision. Other metrics of 

theirs, like Accuracy, F1 Score, Recall and ROC AUC are also peaking at approximately 0.55 to 0.57, 

which indicates strong performance for this classification task. Gradient Boosting also performs fairly 

well, scoring approximately 0.55 to 0.56 for most metrics however, its ROC AUC is slightly lower at 
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approximately 0.50. Logistic Regression, SVM, KNN, Decision Tree, Artificial Neural Network, and 

XGBoost return lower performance with scores dropping to about 0.48 to 0.50 for most metrics, ROC 

AUC in particular, indicating that they are having difficulty distinguishing their classes reasonably well, 

and this would be in part to potential imbalance relative to the dataset or complexity of the dataset. 

Overall, this graph implies that Random Forest and AdaBoost are the two best models for this 

classification task, while others performed lower. However, most importantly, this experiment has 

substantial continued learning potential for model selection in predicting Alcohol Poisoning in future 

medical applications. 

CONCLUSION 

In the present research, we examine the potentially transformative application of machine learning to 

the diagnostic evaluation of challenging and complex medical disorders such as Acute Liver Failure 

(ALF), Methanol Toxicity (MT), Alcohol Poisoning (AP), and Diabetic Ketoacidosis (DKA), all of 

which have overlapping symptoms and metabolic aberrations. The Random Forest-based multilabel 

classification demonstrated an 18% improvement in diagnostic accuracy over single-label techniques, 

and more critically a stronger interrelationship between diagnoses, notably that of Alcohol Poisoning 

and ALF (82% confidence). The best performing models, LightGBM and XGBoost, produced 85.2% 

and 84.7% accuracy on a primary dataset of 10,487 cases, with external validation of generalizability on 

an independent 2023-2024 dataset yielding diagnostic accuracy above 83%. These findings provide a 

meaningful contribution to supporting AI-driven diagnostics; moreover, we offer a pragmatic and 

interpretable framework that will elevate the state of medical and clinical decision making and will save 

lives. One cloud extends for compiling the findings for clinical approval passing through time 

consuming and quality checking procedures for social benefits. 
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