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SUMMARY 

The cloud data management infrastructure is being transformed by serverless databases because of their 

operational simplicity, usage-based pricing, and elastic scalability. However, their performance in real-

world workloads analysis is still unexplored. This paper presents an in-depth analysis of serverless 

database systems using simulation-based benchmarks evaluating Aurora Serverless and FaunaDB against 

RDS PostgreSQL. We simulate cold start latencies, dynamic cost settlement, autoscaling behaviors, 

transaction throughput, and various cost per transaction efficiencies. Our findings reveal up to 45% cost 

saving in burst-heavy workload scenarios while exposing the latency costs stemming from cold starts and 

storage rehydration during recovery. Throughput and stream-level metrics are evaluated highlighting 

IOPS, CPU consumption, query drop rates revealing the critical Elapsed Time benchmarks and 

operational choke point windows. This work provides direct guidance for system designers and cloud 

served database users seeking to shift from provisioned static architectures, fueling upcoming research 

addressing surge anticipation, data processing, and distributed multi-cloud frameworks for real-time 

replication in data-centered systems. 
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INTRODUCTION  

Rise of Serverless Paradigm in Cloud Databases 

The evolution of cloud systems in the last ten years have given rise to a new type of database architecture 

know as server-less databases. These types of platforms have come into existence due to the principles 

of server-less computing, which became popular through stateless functions-as-a-service (FaaS) models 

[1], [2]. On server-less database systems, the main promise is the elimination of the need to manage 

infrastructure while maintaining responsive and elastic performance [13]. Unlike older database systems 

which needed compute and storage resources to be provisioned manually, server-less databases allocate 

these resources automatically based on workload. This approach minimizes operational overhead and 

enhances cost structures in applications with variable or spiky workloads [3]. 

Serverless databases have the distinguishing characteristic of having compute and storage layers that are 

separated and autonomous from one another. While the distributed or log-based backend holds the 
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persistent data, the compute layers remain stateless and only materialize when needed. Consequently, 

developers do not have to manage workflows, instance selection, handle failovers, or tune performance 

settings. Commercial examples integrating serverless features with scalable data infrastructure include 

Amazon Aurora Serverless v2, FaunaDB, Azure Cosmos DB, and Google Firestore [14], [15], [16]. 

These systems seamlessly integrate with microservices and event-driven architectures, providing fast 

responses to queries, elastic auto-scaling with no maintenance required, and high uptime in all geo zones. 

The expansion of serverless databases for financial analytics, real-time dashboards, gaming telemetry, 

and mobile app backend services illustrates a broader trend. Adoption is increasing, but gaps still exist. 

Variability in workload predictability, cold start latency, and self-scaling trends introduce inconsistency 

to the performance of queries and the behavior of the system [4], [6]. This highlights the lack of empirical 

research on serverless databases in simulated environments with consistent benchmarks. This is the gap 

addressed in this work where serverless databases are analyzed in terms of multiple criteria including 

quantitative analysis, cost modeling, and real-time resource evaluation [17]. 

Limitations of Traditional RDS and Scaling Challenges 

The Relational Database Service (RDS) systems, including Amazon RDS for PostgreSQL and MySQL, 

have subsystems that are well accepted in the industry, but they have severe limitations in a fully-fledged 

cloud environment. These systems still mandate users to do upfront provisioning of database instances 

[5], [6]. Vertical scaling besides being expensive in maintenance work is also either inflexible or requires 

enforced downtimes or needs extra read replicas. Moreover, cost models based on CAPEX like RDS 

models lead to persistent computing models which are not cost efficient since they charge constantly 

irrespective of usage [18]. 

As described above, the static resource bounds lead to a lack of elasticity fundamentally hindering the 

responsiveness necessary for modern cloud-native development cycles. For example, in most enterprise 

scenarios, data traffic is often cyclical driven by seasonality tied to certain events e.g., retail. Financial 

services experience a pre-reporting surge just like retail systems experience an uplift during promotional 

campaigns [9], [7]. Over-provisioned RDS instances to deal with these surges result in tremendous 

resource waste during low demand periods. Alternatively, under-provisioning Intel will result in sluggish 

performance during peak periods. 

The billing model of traditional RDS systems is perhaps their most notable disadvantage. These systems 

charge users on a per-unit basis for the uptime of the allocated compute instance. Users incur costs even 

during periods of inactivity. In addition, replication, backup retention, and high availability features add 

even more cost while increasing the complexity and amount of monitoring needed during regular 

operation. While durability and fault tolerance are provided, the sustained operational burden increases 

with the demand from the application [8], [9]. 

As a response to these limitations, serverless databases are proposed as a change in architecture. These 

systems offer greater cost efficiency and elasticity by shifting the burden of resource provisioning and 

management to the platform, with billing done purely based on actual resource usage. Of course, these 

systems also have some drawbacks, including cold start delays, variable scaling latency, and certain 

limits on transaction assurances. The goal of this study is to document these advantages and trade-offs 

alongside empirical performance data and simulation metrics, but first perform a rigorous comparison 

of the two paradigms under uniform conditions. 

Research Objectives, Scope, and Contributions 

The first-order objective of this research study is to assess the efficiency and functionality of serverless 

database systems in comparison with the more traditional RDS deployments. This assignment is fulfilled 

through controlled simulations and benchmarks which model real-world loading patterns. The 

operational simplicity associated with these systems in contrast to their performance predictability is a 

trade-off that many organizations shifting towards serverless data architectures continue to grapple with. 
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The study seeks to analyze serverless databases in the context of query and transaction concurrency, as 

well as escalation in data volume over time to address the gap. Response times are impacted by the 

measurement of active response times during simulated idle-to-active transitions, which then impact 

cold start delays. Cost efficiency is evaluated during a month-long simulation of variable workloads that 

capture the charging behavior of serverless and provisioned systems. System metrics of interest include 

CPU, IOPS, memory load, and the response time to autoscaling which are all sampled by the provided 

database services via dedicated Python scripts. 

The benchmarking is conducted using the Aurora Serverless v2, FaunaDB, and Provisioned PostgreSQL 

RDS setup. Synthetic workloads simulate typical interaction with the databases in three application 

scenarios: e-commerce transaction processing, real-time analytics, and log ingestion. Each system 

undergoes testing for three workload profiles: low, moderate, and spike-heavy, broadening the range of 

behavior captured. System performance and resource utilization are captured per stage to provide better 

insights into behavior over time. 

This approach allows the study to make multiple contributions. It establishes a systematic benchmark 

for execution time, throughput, and scale for each query under the same conditions. It also presents a 

scaling model for serverless cost estimation based on usage profile and frequency of scaling. The results 

are presented in simulation-based graphs highlighting key trade-offs in comparative tables. These serve 

as actionable benchmarks for enterprise architects and system administrators considering the move to 

serverless architectures. 

The study has a proactive perspective as well. It examines the impact of predictive autoscaling and AI-

driven query optimizers on the next evolution of serverless databases. It also looks at deployment models 

for serverless databases in multi-cloud zones and edge data centers, which are becoming increasingly 

important due to latency-sensitive applications. 

To anchor these observations, the article incorporates actual simulation data. The initial comparison is 

found in Figure 1, which shows average query execution time for concurrent workloads with Aurora 

Serverless and provisioned PostgreSQL. As shown in Figure 1, serverless configurations consistently 

outperformed RDS during burst-mode accessed pre-warmed periods. In particular, the mean query 

latency with Aurora Serverless v2 was reduced greater than 40%, showcasing its elastic response and 

rapid efficiency at scale and sustained high concurrency workloads. 

 

Figure 1. Query execution time: serverless vs provisioned postgreSQL 

General features and details of each platform are listed along with their architectural attributes in Table 

1, which compares Aurora Serverless, FaunaDB, and Amazon RDS on scalability, billing model, 

replication strategy and use-case suitability. As illustrated in Table 1, serverless configurations offer 
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granular scaling and pricing flexibility not possible with traditional RDS without significant manual 

effort. These differences provide the rationale for the experimental design developed in the following 

section, where all platforms are subjected to the same workloads and measured against critical 

benchmarks. 

Table 1. Comparative features of aurora serverless, faunaDB, and RDS 

Feature Aurora Serverless v2 FaunaDB Amazon RDS 

(PostgreSQL) 

Compute 

Scalability 

Instant autoscaling Globally distributed Manual vertical scaling 

Billing Model Per second Per transaction Per hour 

Cold Start Delay 30–150 ms Negligible (pre-

warmed) 

None 

Query Capacity 0.5–128 ACUs Variable Fixed by instance type 

Availability Multi-AZ Multi-region Multi-AZ 

Supported 

Queries 

SQL (PostgreSQL 

compatible) 

Document-based Full SQL 

Backup and 

Restore 

Snapshots, point-in-time Built-in, log-based Snapshots, PITR 

Replication Aurora Global Database Strong consistency Manual or Read Replica 

Use Case Fit Event-driven, spiky 

traffic 

API-first, serverless 

apps 

Stateful, traditional apps 

SIMULATION SETUP AND BENCHMARK DESIGN 

Testbed Configuration and Infrastructure Tools 

To achieve reproducible and unbiased evaluations, a simulation testbed was created for the comparative 

analysis of the serverless and traditional database deployments on equal workloads. This testbed was 

built within a private cloud-agnostic virtualized cluster containing baseline compute nodes (2 vCPUs, 8 

GB RAM) alongside Python asynchronous I/O workload traffic generation scripts. The benchmarking 

framework comprised realistic database usage scenarios with reading and writing operations performed 

on the database. 

The simulation included three databases: Amazon Aurora Serverless v2, FaunaDB, and Amazon RDS 

(PostgreSQL 13). Each system was equipped with logging agents for capturing system parameters, such 

as latency, CPU load, IOPS, and autoscaling. For Aurora Serverless v2, the limits of ACU minimum and 

maximum scaling were set to 0.5 and 128. FaunaDB leveraged its globally distributed serverless 

document store with a maintained transactional consistency model. For traditional benchmarking, the 

RDS PostgreSQL instance was equipped with a fixed compute bound, including 100 GB of General 

Purpose SSD (gp2) storage and 100 GB [13], [10]. 

The monitoring infrastructure included Prometheus exporters for capturing low-level metrics, as well as 

a Grafana dashboard overlay for real-time visualization. Timestamped auto-scaling events were 

analyzed in conjunction with CPU metrics using time-series analyses. Query profiling was performed 

with PostgreSQL's pg_stat_statements, Aurora Performance Insights, and temporal query analytics from 

FaunaDB. Metrics on latency and throughput were recorded at second intervals, allowing for 

identification of micro-burst patterns and cold starts. Synthetic delays replicating realistic scenarios of 

varying idling durations were also programmed into the serverless testbeds. 

Synthetic Workloads and Query Profiles 

Benchmarking was based on a predefined set of synthetic workloads reflecting operations in a typical 

enterprise database. Workloads can be broadly classified into three categories: transactional, analytical, 

and telemetry-based. Each workload was characterized by a specific read-to-write ratio, query 

complexity, row size, and level of concurrency. The transactional workload emulated an e-commerce 
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checkout process that included read-modify-write transactions on inventory and order history. The 

analytical workload performed reporting dashboard emulating multidimensional complex JOIN queries 

with aggregation across several tables. The telemetry workload depicted heavy insert operations of time-

series data suited for IoT sensors or application log indexing [11]. 

All workloads were executed in a simulated 24-hour period to capture both idle and peak usage times. 

During the idle phases, synthetic query traffic was limited to 2–3 queries per second, and peak windows 

could exceed 400 transactions per second depending on the test conditions. For realistic execution plan 

reuse and caching, query profiles were created using prepared statements where parameters were varied. 

The dataset schema included five primary tables with relations and indexed timestamp columns to model 

temporal access patterns. 

Connection pooling with adaptive backoff retry mechanisms was used to ensure fairness, all queries 

were submitted through asynchronous clients. Client-side latency measurement, with millisecond 

granularity, was corroborated by server-side logs. For serverless workflows, cold start detection was the 

time gap between invocation request and compute provisioning timestamp analyzed, verified against 

monitoring data [12]. Figure 2 shows the distribution of cold start latency under various idle times. 

 

Figure 2. Cold start latency trends by idle duration 

As seen in Figure 2, serverless query response times increase comparably in the quarter past. In the 

scenario where there is no idle delay (0 minutes), serverless databases behave almost exactly like warm 

starts and average 35 milliseconds per request. However, if left idle for 30 to 60 minutes, cold start 

latency sharply increases to over 700 milliseconds. This confirms infrastructure-level cold rehydration, 

especially in Aurora Serverless where compute containers need to be started prior to processing. The 

warm start behavior, however, remains consistent across all idle durations and is only affected by 

background optimization during the wakeup period. 

Cold Starts, Scaling Events, and Monitoring Parameters 

Additional to latency, this research aimed to model cost and scalability for each deployment. To achieve 

this, a simulated 30 day test cycle was designed within which traffic followed a sinusoidal burst pattern 

tempered with stochastic noise. This enables the replication of daily peak cycles, weekend lulls, and 

sporadic consumer-fueled bursts and is prevalent in consumer-facing applications. Aurora Serverless 

and FaunaDB were set to auto-scaling thresholds while RDS PostgreSQL ran under a fixed capacity 

throughout the simulation. 

Published cloud pricing tables were used to derive billing data which has been normalized to USD per 

day. Provisioned RDS incurred a constant cost of $3.50 per day due to static instance allocation. In 

contrast, Serverless systems responded with a cost variability corresponding to the degree of query load 

and compute time. As shown in Figure 3, serverless costs varied as low as $1.50 on quiet days and 
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surpassing $4.20 during high volume periods. This illustrates clear elasticity of Serverless cost relative 

to usage which captures real time savings during non-peak hours. 

Figure 3 emphasis the stark difference in billing between serverless and provisioned architectures. 

Provisioned traditional RDS databases incur a fixed charge regardless of use, while in serverless 

architectures, the charges depend on the compute-minute billing and the sum of storage interactions. 

This disparity greatly impacts the total cost of ownership, particularly for use cases characterized by 

infrequent and erratic access. In the simulated testbed, the cumulative monthly cost for serverless Aurora 

and provisioned RDS were $75.20 and $105.00, respectively, showcasing an increment of savings of 

28.4% with usage-sensitive billing.  

 

Figure 3. Daily cost simulation over 30-Day varying load 

In addition to cost estimation, this section analyzes self-scaling actions and their relationships with 

resource consumption metrics. Aurora Serverless features a load balancer as well as an internal compute 

manager that initiates scale-up or scale-down actions based on real-time CPU utilization as well as the 

number of active connections. How this logic auto scale reacts is important for performance, especially 

for bursty workloads. 

To illustrate this effect, Figure 4 shows CPU utilization with observed autoscaling triggers over 180 

minutes. CPU usage peaks above 75% with autoscaling events occurring shortly after, which are marked 

as binary indicators on the shared timeline. The figure shows that serverless systems can respond to 

demand surges in under two minutes, although these systems may experience temporary latency spikes 

during the response window. These time frames indicate scaling lag, during which query throughput 

may be severely degraded unless pre-scaling logic is employed. 

 

Figure 4. Autoscaling events triggered vs CPU load profile 
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The red regions within Figure 4 highlight the periods where autoscaling events occurred. During those 

periods, the average query response time suffered a mild degradation ((~12-18%) equating to slowing 

down to approximately 82-88% efficiency) due to resource-leveling reallocations in progress. The 

system, however, achieved optimal performance within a 90-second window post-recovery. Such 

information supports developers and system architects in determining the adequacy of a given serverless 

framework in meeting SLA parameters for latency-sensitive applications. 

Snapshot creation time, accuracy of point-in-time recovery, and replication delay in read replicas drew 

the attention of system performance monitors as well. While these metrics are secondary in importance 

to Figures 2 through 4, they are critical in understanding each system’s operational stability under strain. 

Aurora consistently outperformed RDS in snapshot generation and restoration by at least a factor of 1.6 

due to their log-structured distributed stored layer, which is a system-level advantage. FaunaDB’s 

document-based architecture provided instantaneous recovery due to versioning, but higher sustained 

high-concurrency write contention drove up latency. 

To validate outcomes, each test was performed in triplicate, and averages were computed. Outlier data 

were removed using the 1.5×IQR method, while all latency distributions were tested for non-Gaussian 

with a Shapiro-Wilk test, indicating median and percentile reporting was preferred over mean reporting. 

In this paper, p95 values for latency and throughput are quoted in graphs and tables where applicable. 

In this section, the simulation setup is a given starting point for evaluating performance, cost, and other 

metrics. In this regard, Figures 2 through 4 capture, in aggregate, latency sensitivity, cost behavior, and 

elasticity—one of the most important factors for determining the feasibility of serverless databases in 

production environments. These results directly support the justification provided in the next section 

regarding transactional throughput, certain system load metrics, and elasticity of the system under 

varying workload conditions. 

RESULTS 

Transactional Throughput: Serverless vs Provisioned 

Cloud-based databases are popular for their transactional throughput, especially when workload 

concurrency, query loads, and peak usage times are factored in. In this study, both serverless and 

provisioned databases were placed in a controlled environment consisting of synthetic workloads to 

measure their transactional throughput. These workloads can be best described as a mix of SELECT, 

INSERT, UPDATE, and DELETE commands. Such operations are prevalent in web applications as well 

as in the backend systems of large enterprises. The purpose of this study was to analyze how efficiently 

different systems process high volumes of concurrent queries over extended durations. 

Transactional throughput was tested in an environment simulating instantaneous bursts of up to 1000 

transactions per second. Each system’s databases were put through a stress test which increased the 

number of clients in a controlled manner. All queries were relayed through Python clients programmed 

to work asynchronously. Aurora Serverless v2 configurations were noted to be less impacted by the 

demand spikes as compared to other systems, maintaining steady performance even at ultra-concurrent 

workloads. 
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Figure 5. Throughput per second – serverless vs RDS postgreSQL 

As shown in Figure 5, the throughput in serverless databases scaled almost linearly with the increase in 

load, peaking performance at 940 queries per second at maximum load. In contrast, RDS PostgreSQL 

systems showed signs of bottlenecking beyond the 700 queries per second mark. The RDS instances 

reached saturation around 750 QPS, after which increased latency on responses decreased the gains in 

throughput. The serverless environment mitigated response time and queuing better due to its elastic 

scaling of computing units (ACUs) triggered by load balancers. 

Figure 5 demonstrates that serverless databases can not only meet the traditional systems at the baseline 

loads, but outperform them significantly during burst traffic. This performance was observed in all three 

replicated trials, where the standard deviation of throughput remained below 5% in the serverless 

environment, suggesting more consistent performance under varying demand. 

Additionally, it was noted that warm-start functionality for Aurora Serverless, where compute is held 

during frequent access periods, enhances performance metrics. Throughput Caroline remaining pre-

warmed showed more variability, though still surpassing RDS in many instances. This illustrates the 

need for connection lifecycle management in serverless frameworks and emphasizes the need for tuning 

warm intervals for workloads sensitive to latency. 

System Load Behavior: CPU, IOPS, and Memory Use 

Out of curiosity and in order to achieve a holistic understanding of the interaction and behavior between 

resources in stress within the system, the study delved deeper into the area of resource allocation 

focusing on two models. The primary focuses were: resource allocation efficiency, computational tasks 

such as CPU workload, memory usage, as well as disk operations input output [IOPS]. 

As shown in Figure 6, serverless systems tend to be more efficient in comparison to traditional systems 

which can be seen by the lower CPU usage and IOPS when dealing with peak workloads. In this 

example, a serverless setup has a significantly lower average utilization of 72% and CPU strain when 

compared to RDS PostgreSQL with a peak around 88% utilization. This improvement in the serverless 

setup can be explained through the system's distributed elastic architecture enabling slicing of workloads 

over numerous compute containers that are temporarily and tailor CPU-execution bottleneck optimized 

by cloud providers. 
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Figure 6. Peak load resource usage – CPU and IOPS 

In the context of IOPS, the serverless architecture recorded an average of 850 IOPS while RDS recorded 

620 IOPS. The higher IOPS figure does not point toward some inefficiency; it rather supports the notion 

that serverless systems make efforts toward optimization on parallel read/write operations in multitenant 

architectures. Write-ahead logging along with parallel checkpointing, which is done more often in 

serverless architectures, increases disk activity. Low per-operation latency indicates effective disk 

scheduling and memory prefetching, resulting in consistently low latency for each operation. 

Although not depicted in Figure 6, patterns related to memory usage mirrored the IOPS trends. With a 

sustained load, RDS instances maintained a steady 85% memory usage while serverless instances ranged 

between 60% and 80% in accordance with scale tier. This dynamic range also illustrates the operational 

efficiency of serverless architectures in adapting resource budgets driven by demand. 

To summarize, performance and infrastructure impact distinguishes serverless architecture systems from 

RDS. Serverless offer greater elasticity by distributing compute across short-lived containers and real-

time adjusting IOPS allocation while RDS is constrained to fixed resource ceilings and more susceptible 

to overload and saturation effects under variable workloads. 

Storage Elasticity and Write Latency Trends 

Another analysis focus was the relationship between write latency and storage behavior with incremental 

data increases. By their nature, serverless systems offer automatic storage scaling, with no need for 

volume resizing or restart procedures. Although traditional RDS setups permit some level of autoscaling, 

these systems often require manual admin intervention during periods of significant storage increase. 

Write operations in the form of JSON blob and transaction log inserts were simulated cumulatively over 

30 days and combined into single daily batch operations. This strategy emulated gradual storage growth. 

As depicted in Figure 7, the serverless system showcased progressive granular scaling alongside 

dynamic responsive behaviors. Storage increased from 22 GB to 94 GB by Day 30. On the other hand, 

the RDS setup was initially provisioned with a static 80 GB volume, illustrating a lack of real-time 

elasticity. This resulted in initial over-provisioning in the first half of the simulation, followed by minor 

storage strain during peak write days towards the end of the simulation. 



Harsha Vardhan Reddy Kavuluri, et al: Serverless databases……Archives for Technical Sciences 2025, 33(2), 307-321 

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 33           316 

 

Figure 7. Elastic storage scaling – 30-day simulation 

The functionality of serverless storage systems goes further than mere convenience; users are billed 

based solely on the footprint utilized rather than throughout the entire lifecycle of the service. This is 

particularly beneficial for data aggregation platforms, event driven applications as well as for startup 

companies. 

Another key parameter to monitor during this simulation was write latency. For both systems, latency 

measurements were captured during high-concurrency insert workloads at 2 KB payloads. The median 

write latency in a serverless setting was approximately 38 ms, whereas provisioned RDS had a median 

of 46 ms. This difference may seem negligible, but is significant at scale. In a scenario exceeding one 

million writes daily, serverless systems reduce cumulative write time by nearly two hours. Moreover, 

RDS showed higher write latency variability and wider standard deviation (±15 ms) around lower bound 

thresholds of storage utilization. Tightly bound distribution curves in serverless systems reinforce the 

notion that these systems have stronger consistency in performance as data loads increase. 

The serverless backend architecture, with its distributed log-structured merge-trees alongside 

background compaction, mitigates write amplification and thus reduces the overhead of writes. 

Moreover, automated sharding as well as decoupled IO paths enables the simultaneous intake of large 

volumes of data without disk contention. Traditional RDS systems do not gain from these optimizations 

due to being limited by monolithic file systems and fixed partitioning. Such systems demonstrate 

progressive degradation in write throughput as the data layer becomes saturated. 

The serverless database was tested in the scenarios with varying load profiles, system load, storage 

scaling, and throughput, using the combination of metrics provided by those tests to analyze the behavior 

of the database under realistic conditions. In comparison to other tests conducted, the most important 

and relevant cost-performance indicators for varying levels of workload intensity have been consolidated 

in Table 2. 

Table 2. Cost vs performance metrics across load profiles 

Metric Serverless (Avg) RDS PostgreSQL (Avg) 

Peak Throughput (QPS) 940 740 

Median Query Latency (ms) 53 71 

Cold Start Delay (ms) 180 N/A 

CPU Utilization (%) 72 88 

IOPS at Peak Load 850 620 

Avg Write Latency (ms) 38 46 

Storage Growth (GB/Month) 72 0 (fixed at 80 GB) 

30-Day Total Cost (USD) 75.20 105.00 
 



Harsha Vardhan Reddy Kavuluri, et al: Serverless databases……Archives for Technical Sciences 2025, 33(2), 307-321 

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 33           317 

As observed from the table, serverless databases perform well in the most critical dimensions such as 

responsiveness, resource efficiency, and overall cost of ownership. The only exception is the cold start 

delay which, likely because of needing pre-warming or connection pooling, remains a limitation. In 

practice, unless the serverless workloads are consistently high, the resource elasticity and throughput 

advantages for most scenarios surpass the downsides of cold starts. 

OBSERVATIONS AND ARCHITECTURAL TRADEOFFS 

Query Drop Rate Due to Cold Starts and Scaling Lag 

The cold start problem still attracts considerable debate in the context of serverless database systems. 

While these systems promise elasticity and cost optimization, the cold start period is marked by 

increased latency or complete failures of all queries. In this phase of the research, benchmark simulations 

were concentrated on the rate of query dropout and its consequences as a function of idle time and 

concurrent access. 

In the case of serverless systems with various periods of inactivity ranging from 0 to 30 minutes, their 

responsiveness following a client query was tested. In this scenario, failures to respond occurred when 

no data was sent back within the specified timeout of two seconds, or the system sent a connection error 

response. On the other hand, the RDS PostgreSQL instance did not lose any responsiveness as it 

remained provisioned, demonstrating the persistent infrastructure advantage. 

Observations from the analysis indicated that cold starts with Aurora Serverless began to incur notable 

failure rates past the 10-minute idle threshold. As illustrated in Figure 8, failure rates increased 

exponentially with the duration of idleness, reaching almost 30 percent after a full hour. The majority of 

failures appeared to be due to the slow provisioning of computing resources, or too little capacity buffer 

buffers during immediate concurrent surge oligopolies. More curiously, not all failures exhibited latency 

increases; some were outright denials of connection, most notably during peak latency shifts when 

autoscale decisions stalled. 

 

Figure 8. Failure rate curve under cold start stress test 

Figure 8 illustrates a smooth failure rate curve representing query failure as a function of idle time. There 

is a clear step function at 0 minutes of inactivity where no failures were observed. After a brief span of 

inactive time, by the 20 minute mark, failures climbed to over 8 percent, plateauing to critical levels 

between the 45-60 minute window. This observation points towards the extent of a serverless 

architecture's cold resource rehydration lag in correlation with a drop rate threshold serving minimally 

viable SLA conformance in real-time systems. 

The compounding issue here is scaling lag. In serverless settings, “cold start” micro delays—brief pauses 

under load to raise compute resources—may happen even when there is no cold start. These delays in 

resource scaling, which typically fall within the range of hundreds of milliseconds to a few seconds, 

pose serious challenges to financial trading platforms and IoT telemetry systems. Although responsive 

to changes in load, the autoscaling mechanisms predictively compute metrics like CPU usage or active 



Harsha Vardhan Reddy Kavuluri, et al: Serverless databases……Archives for Technical Sciences 2025, 33(2), 307-321 

Technical Institute Bijeljina, Archives for Technical Sciences. Year XVII – N 0 33           318 

connections, which are used as triggers for scaling. Their absence of foreseeing capabilities introduces 

the empty resource allocation window where resource provisioning lags incoming requests causing 

temporary resource congestion followed by packet loss. 

In real-world scenarios, this emphasizes the need for scheduled architecture self-aware scaling, 

connection reuse, and pre-warming approaches. Packet loss behavior can be mitigated by setting 

minimum boring baselines or pooling ACUs. These adjustments do improve response times by 

tightening the cold donut gap, but they also offset the cost efficiency the serverless architecture aims to 

provide. Hence, the balance between responsiveness and cost efficiency is a design-level choice for 

system builders. 

Snapshot and Backup Recovery Benchmarks 

The assessment focus on the speed and consistency of the backup recovery was equally important while 

evaluating operational metrics for this study as it is one of the key measures of fault tolerance and 

resilience of a system. Both serverless and RDS systems employ snapshot-based recovery, but their 

internal architectures differ so that the system’s load and the storage footprint apply different recovery 

behaviors. 

In this benchmark, the augmenting storage sizes snapshot between 10 GB and 120 GB were taken and 

restored in separate environments to isolate and measure recovery times. The recovery procedure 

consisted of creating a new database instance and restoring log files to achieve a consistent state 

transactionally. Only successful recoveries during nominal conditions were counted for measurement 

and all edge case scenarios due to user misconfiguration or incomplete backups were ignored. 

As demonstrated in Figure 9, serverless databases have a clear performance advantage over RDS 

PostgreSQL for all tested storage sizes. For instance, recovering a 60 GB snapshot took around 6.5 

minutes in Aurora Serverless, while RDS took over 10 minutes. At 100 GB, serverless systems still 

completed recovery in under 10 minutes while RDS was still over 16 minutes. This performance 

differential was attributed to Aurora’s log-structured, distributed storage engine with its peculiar 

compute and storage rehydration. Aurora’s compute and storage rehydration decoupling permits log 

parallel replay which lowers restore latency. 

 

Figure 9. Backup recovery time vs storage footprint 

Figure 9 illustrates the serverless recovery time is more linear compared to RDS’s more exponential 

profile. This latter difference is particularly relevant in a disaster recovery or continuous integration 

context where backups are rotated and restored rapidly as part of routine activity. Serverless platforms 

allow for less than whole binary copies due to the use of snapshot deltas and tiered storage, thereby 

enabling more granular recovery. 
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The cloud-native nature of serverless systems which favor immutability and statelessness serves as an 

architectural advantage. Zero coupling between compute and storage improves recovery task processing 

which can be done at any compute instance with only minimal coordination. Any clustered compute 

instance can be used. In contrast, RDS has to reallocate a complete database instance, validate the 

filesystem, and restore replication paths which all elongate recovery windows. 

There is, however, a trade-off in complexity arising from the improved recovery time of serverless 

platforms. Developers have less control over the timing, granularity of the durability tiers, and snapshot 

mechanisms. Custom backup solutions or retention policies may not be implemented without proprietary 

platform automation tools or proprietary APIs. 

Regardless of these constraints, serverless systems excel under the modern cloud infrastructure limits 

showcasing resilience, especially in multi-tenant contexts, or CI/CD pipelines where swift rollback is 

crucial. 

Write-Heavy vs Read-Heavy Performance Variance 

The final dimension underscored analyzing the behavior of serverless and provisioned database systems 

concerning different patterns of read versus write intensity. In practice, most application workloads tend 

to be either deeply read-centric or write-centric. Evaluating performance variance under each of these 

loads is vital to answering the deployment considerations. 

For the experiment, two synthetic workloads were created. The read-heavy workload was composed of 

85% SELECT queries and 15% INSERT/UPDATE/DELETE operations. The write-heavy workload 

inverted this proportion to 75% write and 25% read. These scenarios were tested on both platforms at 

moderate concurrency of 200 QPS held for 15 minutes. 

Overall, results indicated serverless databases outperformed other systems under read-heavy workloads. 

Their ability to horizontally scale reading compute containers and make use of certain caching strategies, 

like Aurora’s reader endpoints, allowed latency to be maintained under 40 milliseconds even at sustained 

load. In contrast, RDS PostgreSQL was throttled by its provisioned replica count, suffered higher median 

read latencies of approximately 62 milliseconds, and increased CPU load as the number of connections 

grew. 

Yet, where writing was the focus, performance shifted in Serverless frameworks. They proved most 

capable at burst handling during the initial write flows, but over time, strain from sustained writes 

steeped burdens on log flushing and compaction subsystems. During log segment rollovers and storage 

checkpoints, latency spikes were noted. Although many users would not notice these operations vis-a-

vis the background workings, they would introduce noise in terms of percentile latency. During these 

periods, median write latency increased from 38 to 57 milliseconds while RDS PostgreSQL stayed level 

around 48 milliseconds. 

All described changes are captured in Table 3, which explicates the annotation breakdown of the SLA 

violations and different anomalous events as classified within the test runs. This table presents five major 

classes of performance violation starting from cold start timeouts to snapshot lag and subsequent query 

drops in the rhythm during rehydration bursts. 

Table 3. SLA violation categories and anomaly statistics 

SLA Violation Category Serverless (Count) RDS PostgreSQL (Count) 

Cold Start Timeout 8 0 

Scaling Delay > 2s 5 1 

Snapshot Lag > 5m 2 4 

IOPS Saturation 3 6 

Query Drop during Rehydration 7 1 
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Table 3 strengthens the broader model insight for serverless systems’ elastic scaling and recovery 

capabilities, agility is accompanied by greater performance variability and risks of transient performance 

anomalies. While more stable, RDS systems sacrifice agility for predicable, stable throughput. These 

systems suffer from idle resource conditions and slow recovery trajectories. 

Practically speaking, this means that application architects have to make paradigm decisions based on 

specific workloads. While serverless systems fit best for bursty, read-heavy, latency-tolerant workloads, 

RDS instances may be preferable in constrained environments where consistency, regulated SLAs, and 

bounded envelope performance are required. 

To summarize, this section has demonstrated the strengths and weaknesses of serverless database 

systems as scrutinized through the lens of practical operations. Empirical illustrations in Figures 8 and 

9, and Table 3 provide the balanced architectural rationale to aid system designers into assessing 

performance stability and recovery interplay with cost and control.  

CONCLUSION AND FUTURE TRENDS 

Summary of Key Results and Cost Optimization Insights 

The scope of this study focused on the assessment within the context of the serverless and provisioned 

relational systems, including evaluating the RDS PostgreSQL’s operational performance, system 

scalability, and cost efficiency. Simulation benchmarks also proved that serverless models significantly 

outperform provisioned ones in fluctuant environments for autoscaling and storage elasticity, especially 

in regard to query throughput. Aurora Serverless v2 was notable for maintaining strong performance 

with increasing levels of concurrency, achieving up to thirty percent reduction in query latency while 

delivering twenty-eight percent savings over the cost in a month’s cycle. These benefits were most 

striking in scenarios dominated by read requests and bursty workloads where efficient real-time compute 

provisioning and decommissioning maximized efficiency. Empirical evidence from this research shows 

that demand variable applications in cost-sensitive environments are best served by serverless platforms. 

Migration Guidelines for Practitioners and Architects 

In addition to the benefits mentioned earlier, transitioning to serverless databases has some architectural 

caveats. Scaling lag alongside cold starts and transient query failures were noted, particularly with 

compute provisioning starting from idle states. For low-latency and mission-critical systems, these 

problems can lead to SLA violations unless mitigated by architectural redesigns. For practitioners 

planning a migration, we recommend the use of pre-warming strategies, persistent connection pools, and 

redundant query routing. It is equally important to examine workload profile characteristics prior to 

migration. For systems that are write-heavy or require strict consistency, hybrid configurations where 

serverless readers are coupled with provisioned write masters can be optimally balanced. In addition, 

observing cost variance relative to running expenses should be closely monitored in conjunction with 

proprietary autoscale APIs. With the described approaches, elasticity and minimal operational burden 

benefits of serverless databases can still be retained alongside predictability of the system. 

Roadmap: Toward Serverless in Multi-Cloud, AI-Powered Workloads 

Developing cloud-native systems will provide opportunities for newer serverless databases which will 

be compatible with multi-cloud environments, AI-enhanced frameworks, and federated data-processing 

infrastructure. The upcoming innovations focus on AI-powered autoscaling engines that forecast traffic, 

compute resource requirements, analyze the workload's cyclical patterns, and make resource allocations. 

Moreover, support for distributed multi-region replicas and orchestration triggered by events across 

cloud boundaries will enable more sophisticated serverless systems. Enhancements are anticipated to 

support real-time IoT analytics, decentralized applications, AI model training pipelines, and other 

emerging use cases. The databases using serverless architecture will mark a turning point in reactive 

scaling and the ability to self-adjust costs, response time, regulatory considerations, and governance 

across different computing environments in the enterprise data infrastructure. 
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