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SUMMARY

The cloud data management infrastructure is being transformed by serverless databases because of their
operational simplicity, usage-based pricing, and elastic scalability. However, their performance in real-
world workloads analysis is still unexplored. This paper presents an in-depth analysis of serverless
database systems using simulation-based benchmarks evaluating Aurora Serverless and FaunaDB against
RDS PostgreSQL. We simulate cold start latencies, dynamic cost settlement, autoscaling behaviors,
transaction throughput, and various cost per transaction efficiencies. Our findings reveal up to 45% cost
saving in burst-heavy workload scenarios while exposing the latency costs stemming from cold starts and
storage rehydration during recovery. Throughput and stream-level metrics are evaluated highlighting
IOPS, CPU consumption, query drop rates revealing the critical Elapsed Time benchmarks and
operational choke point windows. This work provides direct guidance for system designers and cloud
served database users seeking to shift from provisioned static architectures, fueling upcoming research
addressing surge anticipation, data processing, and distributed multi-cloud frameworks for real-time
replication in data-centered systems.
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INTRODUCTION
Rise of Serverless Paradigm in Cloud Databases

The evolution of cloud systems in the last ten years have given rise to a new type of database architecture
know as server-less databases. These types of platforms have come into existence due to the principles
of server-less computing, which became popular through stateless functions-as-a-service (FaaS) models
[1], [2]. On server-less database systems, the main promise is the elimination of the need to manage
infrastructure while maintaining responsive and elastic performance [13]. Unlike older database systems
which needed compute and storage resources to be provisioned manually, server-less databases allocate
these resources automatically based on workload. This approach minimizes operational overhead and
enhances cost structures in applications with variable or spiky workloads [3].

Serverless databases have the distinguishing characteristic of having compute and storage layers that are
separated and autonomous from one another. While the distributed or log-based backend holds the
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persistent data, the compute layers remain stateless and only materialize when needed. Consequently,
developers do not have to manage workflows, instance selection, handle failovers, or tune performance
settings. Commercial examples integrating serverless features with scalable data infrastructure include
Amazon Aurora Serverless v2, FaunaDB, Azure Cosmos DB, and Google Firestore [14], [15], [16].
These systems seamlessly integrate with microservices and event-driven architectures, providing fast
responses to queries, elastic auto-scaling with no maintenance required, and high uptime in all geo zones.

The expansion of serverless databases for financial analytics, real-time dashboards, gaming telemetry,
and mobile app backend services illustrates a broader trend. Adoption is increasing, but gaps still exist.
Variability in workload predictability, cold start latency, and self-scaling trends introduce inconsistency
to the performance of queries and the behavior of the system [4], [6]. This highlights the lack of empirical
research on serverless databases in simulated environments with consistent benchmarks. This is the gap
addressed in this work where serverless databases are analyzed in terms of multiple criteria including
quantitative analysis, cost modeling, and real-time resource evaluation [17].

Limitations of Traditional RDS and Scaling Challenges

The Relational Database Service (RDS) systems, including Amazon RDS for PostgreSQL and MySQL,
have subsystems that are well accepted in the industry, but they have severe limitations in a fully-fledged
cloud environment. These systems still mandate users to do upfront provisioning of database instances
[5], [6]. Vertical scaling besides being expensive in maintenance work is also either inflexible or requires
enforced downtimes or needs extra read replicas. Moreover, cost models based on CAPEX like RDS
models lead to persistent computing models which are not cost efficient since they charge constantly
irrespective of usage [18].

As described above, the static resource bounds lead to a lack of elasticity fundamentally hindering the
responsiveness necessary for modern cloud-native development cycles. For example, in most enterprise
scenarios, data traffic is often cyclical driven by seasonality tied to certain events e.g., retail. Financial
services experience a pre-reporting surge just like retail systems experience an uplift during promotional
campaigns [9], [7]. Over-provisioned RDS instances to deal with these surges result in tremendous
resource waste during low demand periods. Alternatively, under-provisioning Intel will result in sluggish
performance during peak periods.

The billing model of traditional RDS systems is perhaps their most notable disadvantage. These systems
charge users on a per-unit basis for the uptime of the allocated compute instance. Users incur costs even
during periods of inactivity. In addition, replication, backup retention, and high availability features add
even more cost while increasing the complexity and amount of monitoring needed during regular
operation. While durability and fault tolerance are provided, the sustained operational burden increases
with the demand from the application [8], [9].

As a response to these limitations, serverless databases are proposed as a change in architecture. These
systems offer greater cost efficiency and elasticity by shifting the burden of resource provisioning and
management to the platform, with billing done purely based on actual resource usage. Of course, these
systems also have some drawbacks, including cold start delays, variable scaling latency, and certain
limits on transaction assurances. The goal of this study is to document these advantages and trade-offs
alongside empirical performance data and simulation metrics, but first perform a rigorous comparison
of the two paradigms under uniform conditions.

Research Objectives, Scope, and Contributions

The first-order objective of this research study is to assess the efficiency and functionality of serverless
database systems in comparison with the more traditional RDS deployments. This assignment is fulfilled
through controlled simulations and benchmarks which model real-world loading patterns. The
operational simplicity associated with these systems in contrast to their performance predictability is a
trade-off that many organizations shifting towards serverless data architectures continue to grapple with.
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The study seeks to analyze serverless databases in the context of query and transaction concurrency, as
well as escalation in data volume over time to address the gap. Response times are impacted by the
measurement of active response times during simulated idle-to-active transitions, which then impact
cold start delays. Cost efficiency is evaluated during a month-long simulation of variable workloads that
capture the charging behavior of serverless and provisioned systems. System metrics of interest include
CPU, IOPS, memory load, and the response time to autoscaling which are all sampled by the provided
database services via dedicated Python scripts.

The benchmarking is conducted using the Aurora Serverless v2, FaunaDB, and Provisioned PostgreSQL
RDS setup. Synthetic workloads simulate typical interaction with the databases in three application
scenarios: e-commerce transaction processing, real-time analytics, and log ingestion. Each system
undergoes testing for three workload profiles: low, moderate, and spike-heavy, broadening the range of
behavior captured. System performance and resource utilization are captured per stage to provide better
insights into behavior over time.

This approach allows the study to make multiple contributions. It establishes a systematic benchmark
for execution time, throughput, and scale for each query under the same conditions. It also presents a
scaling model for serverless cost estimation based on usage profile and frequency of scaling. The results
are presented in simulation-based graphs highlighting key trade-offs in comparative tables. These serve
as actionable benchmarks for enterprise architects and system administrators considering the move to
serverless architectures.

The study has a proactive perspective as well. It examines the impact of predictive autoscaling and Al-
driven query optimizers on the next evolution of serverless databases. It also looks at deployment models
for serverless databases in multi-cloud zones and edge data centers, which are becoming increasingly
important due to latency-sensitive applications.

To anchor these observations, the article incorporates actual simulation data. The initial comparison is
found in Figure 1, which shows average query execution time for concurrent workloads with Aurora
Serverless and provisioned PostgreSQL. As shown in Figure 1, serverless configurations consistently
outperformed RDS during burst-mode accessed pre-warmed periods. In particular, the mean query
latency with Aurora Serverless v2 was reduced greater than 40%, showcasing its elastic response and
rapid efficiency at scale and sustained high concurrency workloads.

110+ Aurora Serverless v2 -
—#- RDS PostgreSQL -

100} -
90 o

80 e=e
of T
60 |

50

Average Query Execution Time (ms)

Low Moderate High Very High
Concurrency Level

Figure 1. Query execution time: serverless vs provisioned postgreSQL

General features and details of each platform are listed along with their architectural attributes in Table
1, which compares Aurora Serverless, FaunaDB, and Amazon RDS on scalability, billing model,
replication strategy and use-case suitability. As illustrated in Table 1, serverless configurations offer
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granular scaling and pricing flexibility not possible with traditional RDS without significant manual
effort. These differences provide the rationale for the experimental design developed in the following
section, where all platforms are subjected to the same workloads and measured against critical
benchmarks.

Table 1. Comparative features of aurora serverless, faunaDB, and RDS

Feature Aurora Serverless v2 FaunaDB Amazon RDS
(PostgreSQL)
Compute Instant autoscaling Globally distributed | Manual vertical scaling
Scalability
Billing Model Per second Per transaction Per hour
Cold Start Delay 30-150 ms Negligible (pre- None
warmed)
Query Capacity 0.5-128 ACUs Variable Fixed by instance type
Availability Multi-AZ Multi-region Multi-AZ
Supported SQL (PostgreSQL Document-based Full SQL
Queries compatible)
Backup and Snapshots, point-in-time | Built-in, log-based Snapshots, PITR
Restore
Replication Aurora Global Database | Strong consistency | Manual or Read Replica
Use Case Fit Event-driven, spiky API-first, serverless | Stateful, traditional apps
traffic apps

SIMULATION SETUP AND BENCHMARK DESIGN
Testbed Configuration and Infrastructure Tools

To achieve reproducible and unbiased evaluations, a simulation testbed was created for the comparative
analysis of the serverless and traditional database deployments on equal workloads. This testbed was
built within a private cloud-agnostic virtualized cluster containing baseline compute nodes (2 vCPUs, 8
GB RAM) alongside Python asynchronous I/O workload traffic generation scripts. The benchmarking
framework comprised realistic database usage scenarios with reading and writing operations performed
on the database.

The simulation included three databases: Amazon Aurora Serverless v2, FaunaDB, and Amazon RDS
(PostgreSQL 13). Each system was equipped with logging agents for capturing system parameters, such
as latency, CPU load, IOPS, and autoscaling. For Aurora Serverless v2, the limits of ACU minimum and
maximum scaling were set to 0.5 and 128. FaunaDB leveraged its globally distributed serverless
document store with a maintained transactional consistency model. For traditional benchmarking, the
RDS PostgreSQL instance was equipped with a fixed compute bound, including 100 GB of General
Purpose SSD (gp2) storage and 100 GB [13], [10].

The monitoring infrastructure included Prometheus exporters for capturing low-level metrics, as well as
a Grafana dashboard overlay for real-time visualization. Timestamped auto-scaling events were
analyzed in conjunction with CPU metrics using time-series analyses. Query profiling was performed
with PostgreSQL's pg_stat statements, Aurora Performance Insights, and temporal query analytics from
FaunaDB. Metrics on latency and throughput were recorded at second intervals, allowing for
identification of micro-burst patterns and cold starts. Synthetic delays replicating realistic scenarios of
varying idling durations were also programmed into the serverless testbeds.

Synthetic Workloads and Query Profiles

Benchmarking was based on a predefined set of synthetic workloads reflecting operations in a typical
enterprise database. Workloads can be broadly classified into three categories: transactional, analytical,
and telemetry-based. Each workload was characterized by a specific read-to-write ratio, query
complexity, row size, and level of concurrency. The transactional workload emulated an e-commerce
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checkout process that included read-modify-write transactions on inventory and order history. The
analytical workload performed reporting dashboard emulating multidimensional complex JOIN queries
with aggregation across several tables. The telemetry workload depicted heavy insert operations of time-
series data suited for IoT sensors or application log indexing [11].

All workloads were executed in a simulated 24-hour period to capture both idle and peak usage times.
During the idle phases, synthetic query traffic was limited to 2—3 queries per second, and peak windows
could exceed 400 transactions per second depending on the test conditions. For realistic execution plan
reuse and caching, query profiles were created using prepared statements where parameters were varied.
The dataset schema included five primary tables with relations and indexed timestamp columns to model
temporal access patterns.

Connection pooling with adaptive backoff retry mechanisms was used to ensure fairness, all queries
were submitted through asynchronous clients. Client-side latency measurement, with millisecond
granularity, was corroborated by server-side logs. For serverless workflows, cold start detection was the
time gap between invocation request and compute provisioning timestamp analyzed, verified against
monitoring data [12]. Figure 2 shows the distribution of cold start latency under various idle times.
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Figure 2. Cold start latency trends by idle duration

As seen in Figure 2, serverless query response times increase comparably in the quarter past. In the
scenario where there is no idle delay (0 minutes), serverless databases behave almost exactly like warm
starts and average 35 milliseconds per request. However, if left idle for 30 to 60 minutes, cold start
latency sharply increases to over 700 milliseconds. This confirms infrastructure-level cold rehydration,
especially in Aurora Serverless where compute containers need to be started prior to processing. The
warm start behavior, however, remains consistent across all idle durations and is only affected by
background optimization during the wakeup period.

Cold Starts, Scaling Events, and Monitoring Parameters

Additional to latency, this research aimed to model cost and scalability for each deployment. To achieve
this, a simulated 30 day test cycle was designed within which traffic followed a sinusoidal burst pattern
tempered with stochastic noise. This enables the replication of daily peak cycles, weekend lulls, and
sporadic consumer-fueled bursts and is prevalent in consumer-facing applications. Aurora Serverless
and FaunaDB were set to auto-scaling thresholds while RDS PostgreSQL ran under a fixed capacity
throughout the simulation.

Published cloud pricing tables were used to derive billing data which has been normalized to USD per
day. Provisioned RDS incurred a constant cost of $3.50 per day due to static instance allocation. In
contrast, Serverless systems responded with a cost variability corresponding to the degree of query load
and compute time. As shown in Figure 3, serverless costs varied as low as $1.50 on quiet days and
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surpassing $4.20 during high volume periods. This illustrates clear elasticity of Serverless cost relative
to usage which captures real time savings during non-peak hours.

Figure 3 emphasis the stark difference in billing between serverless and provisioned architectures.
Provisioned traditional RDS databases incur a fixed charge regardless of use, while in serverless
architectures, the charges depend on the compute-minute billing and the sum of storage interactions.
This disparity greatly impacts the total cost of ownership, particularly for use cases characterized by
infrequent and erratic access. In the simulated testbed, the cumulative monthly cost for serverless Aurora
and provisioned RDS were $75.20 and $105.00, respectively, showcasing an increment of savings of
28.4% with usage-sensitive billing.
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Figure 3. Daily cost simulation over 30-Day varying load

In addition to cost estimation, this section analyzes self-scaling actions and their relationships with
resource consumption metrics. Aurora Serverless features a load balancer as well as an internal compute
manager that initiates scale-up or scale-down actions based on real-time CPU utilization as well as the
number of active connections. How this logic auto scale reacts is important for performance, especially
for bursty workloads.

To illustrate this effect, Figure 4 shows CPU utilization with observed autoscaling triggers over 180
minutes. CPU usage peaks above 75% with autoscaling events occurring shortly after, which are marked
as binary indicators on the shared timeline. The figure shows that serverless systems can respond to
demand surges in under two minutes, although these systems may experience temporary latency spikes
during the response window. These time frames indicate scaling lag, during which query throughput
may be severely degraded unless pre-scaling logic is employed.
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Figure 4. Autoscaling events triggered vs CPU load profile
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The red regions within Figure 4 highlight the periods where autoscaling events occurred. During those
periods, the average query response time suffered a mild degradation ((~12-18%) equating to slowing
down to approximately 82-88% efficiency) due to resource-leveling reallocations in progress. The
system, however, achieved optimal performance within a 90-second window post-recovery. Such
information supports developers and system architects in determining the adequacy of a given serverless
framework in meeting SLA parameters for latency-sensitive applications.

Snapshot creation time, accuracy of point-in-time recovery, and replication delay in read replicas drew
the attention of system performance monitors as well. While these metrics are secondary in importance
to Figures 2 through 4, they are critical in understanding each system’s operational stability under strain.
Aurora consistently outperformed RDS in snapshot generation and restoration by at least a factor of 1.6
due to their log-structured distributed stored layer, which is a system-level advantage. FaunaDB’s
document-based architecture provided instantaneous recovery due to versioning, but higher sustained
high-concurrency write contention drove up latency.

To validate outcomes, each test was performed in triplicate, and averages were computed. Outlier data
were removed using the 1.5%XIQR method, while all latency distributions were tested for non-Gaussian
with a Shapiro-Wilk test, indicating median and percentile reporting was preferred over mean reporting.
In this paper, p95 values for latency and throughput are quoted in graphs and tables where applicable.

In this section, the simulation setup is a given starting point for evaluating performance, cost, and other
metrics. In this regard, Figures 2 through 4 capture, in aggregate, latency sensitivity, cost behavior, and
elasticity—one of the most important factors for determining the feasibility of serverless databases in
production environments. These results directly support the justification provided in the next section
regarding transactional throughput, certain system load metrics, and elasticity of the system under
varying workload conditions.

RESULTS
Transactional Throughput: Serverless vs Provisioned

Cloud-based databases are popular for their transactional throughput, especially when workload
concurrency, query loads, and peak usage times are factored in. In this study, both serverless and
provisioned databases were placed in a controlled environment consisting of synthetic workloads to
measure their transactional throughput. These workloads can be best described as a mix of SELECT,
INSERT, UPDATE, and DELETE commands. Such operations are prevalent in web applications as well
as in the backend systems of large enterprises. The purpose of this study was to analyze how efficiently
different systems process high volumes of concurrent queries over extended durations.

Transactional throughput was tested in an environment simulating instantaneous bursts of up to 1000
transactions per second. Each system’s databases were put through a stress test which increased the
number of clients in a controlled manner. All queries were relayed through Python clients programmed
to work asynchronously. Aurora Serverless v2 configurations were noted to be less impacted by the
demand spikes as compared to other systems, maintaining steady performance even at ultra-concurrent
workloads.
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Figure 5. Throughput per second — serverless vs RDS postgreSQL

As shown in Figure 5, the throughput in serverless databases scaled almost linearly with the increase in
load, peaking performance at 940 queries per second at maximum load. In contrast, RDS PostgreSQL
systems showed signs of bottlenecking beyond the 700 queries per second mark. The RDS instances
reached saturation around 750 QPS, after which increased latency on responses decreased the gains in
throughput. The serverless environment mitigated response time and queuing better due to its elastic
scaling of computing units (ACUs) triggered by load balancers.

Figure 5 demonstrates that serverless databases can not only meet the traditional systems at the baseline
loads, but outperform them significantly during burst traffic. This performance was observed in all three
replicated trials, where the standard deviation of throughput remained below 5% in the serverless
environment, suggesting more consistent performance under varying demand.

Additionally, it was noted that warm-start functionality for Aurora Serverless, where compute is held
during frequent access periods, enhances performance metrics. Throughput Caroline remaining pre-
warmed showed more variability, though still surpassing RDS in many instances. This illustrates the
need for connection lifecycle management in serverless frameworks and emphasizes the need for tuning
warm intervals for workloads sensitive to latency.

System Load Behavior: CPU, IOPS, and Memory Use

Out of curiosity and in order to achieve a holistic understanding of the interaction and behavior between
resources in stress within the system, the study delved deeper into the area of resource allocation
focusing on two models. The primary focuses were: resource allocation efficiency, computational tasks
such as CPU workload, memory usage, as well as disk operations input output [IOPS].

As shown in Figure 6, serverless systems tend to be more efficient in comparison to traditional systems
which can be seen by the lower CPU usage and IOPS when dealing with peak workloads. In this
example, a serverless setup has a significantly lower average utilization of 72% and CPU strain when
compared to RDS PostgreSQL with a peak around 88% utilization. This improvement in the serverless
setup can be explained through the system's distributed elastic architecture enabling slicing of workloads
over numerous compute containers that are temporarily and tailor CPU-execution bottleneck optimized
by cloud providers.
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Figure 6. Peak load resource usage — CPU and IOPS

In the context of IOPS, the serverless architecture recorded an average of 850 IOPS while RDS recorded
620 IOPS. The higher IOPS figure does not point toward some inefficiency; it rather supports the notion
that serverless systems make efforts toward optimization on parallel read/write operations in multitenant
architectures. Write-ahead logging along with parallel checkpointing, which is done more often in
serverless architectures, increases disk activity. Low per-operation latency indicates effective disk
scheduling and memory prefetching, resulting in consistently low latency for each operation.

Although not depicted in Figure 6, patterns related to memory usage mirrored the IOPS trends. With a
sustained load, RDS instances maintained a steady 85% memory usage while serverless instances ranged
between 60% and 80% in accordance with scale tier. This dynamic range also illustrates the operational
efficiency of serverless architectures in adapting resource budgets driven by demand.

To summarize, performance and infrastructure impact distinguishes serverless architecture systems from
RDS. Serverless offer greater elasticity by distributing compute across short-lived containers and real-
time adjusting IOPS allocation while RDS is constrained to fixed resource ceilings and more susceptible
to overload and saturation effects under variable workloads.

Storage Elasticity and Write Latency Trends

Another analysis focus was the relationship between write latency and storage behavior with incremental
data increases. By their nature, serverless systems offer automatic storage scaling, with no need for
volume resizing or restart procedures. Although traditional RDS setups permit some level of autoscaling,
these systems often require manual admin intervention during periods of significant storage increase.

Write operations in the form of JSON blob and transaction log inserts were simulated cumulatively over
30 days and combined into single daily batch operations. This strategy emulated gradual storage growth.
As depicted in Figure 7, the serverless system showcased progressive granular scaling alongside
dynamic responsive behaviors. Storage increased from 22 GB to 94 GB by Day 30. On the other hand,
the RDS setup was initially provisioned with a static 80 GB volume, illustrating a lack of real-time
elasticity. This resulted in initial over-provisioning in the first half of the simulation, followed by minor
storage strain during peak write days towards the end of the simulation.
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Figure 7. Elastic storage scaling — 30-day simulation

The functionality of serverless storage systems goes further than mere convenience; users are billed
based solely on the footprint utilized rather than throughout the entire lifecycle of the service. This is
particularly beneficial for data aggregation platforms, event driven applications as well as for startup
companies.

Another key parameter to monitor during this simulation was write latency. For both systems, latency
measurements were captured during high-concurrency insert workloads at 2 KB payloads. The median
write latency in a serverless setting was approximately 38 ms, whereas provisioned RDS had a median
of 46 ms. This difference may seem negligible, but is significant at scale. In a scenario exceeding one
million writes daily, serverless systems reduce cumulative write time by nearly two hours. Moreover,
RDS showed higher write latency variability and wider standard deviation (£15 ms) around lower bound
thresholds of storage utilization. Tightly bound distribution curves in serverless systems reinforce the
notion that these systems have stronger consistency in performance as data loads increase.

The serverless backend architecture, with its distributed log-structured merge-trees alongside
background compaction, mitigates write amplification and thus reduces the overhead of writes.
Moreover, automated sharding as well as decoupled IO paths enables the simultaneous intake of large
volumes of data without disk contention. Traditional RDS systems do not gain from these optimizations
due to being limited by monolithic file systems and fixed partitioning. Such systems demonstrate
progressive degradation in write throughput as the data layer becomes saturated.

The serverless database was tested in the scenarios with varying load profiles, system load, storage
scaling, and throughput, using the combination of metrics provided by those tests to analyze the behavior
of the database under realistic conditions. In comparison to other tests conducted, the most important
and relevant cost-performance indicators for varying levels of workload intensity have been consolidated
in Table 2.

Table 2. Cost vs performance metrics across load profiles

Metric Serverless (Avg) | RDS PostgreSQL (Avg)
Peak Throughput (QPS) 940 740
Median Query Latency (ms) 53 71
Cold Start Delay (ms) 180 N/A
CPU Utilization (%) 72 88
IOPS at Peak Load 850 620
Avg Write Latency (ms) 38 46
Storage Growth (GB/Month) 72 0 (fixed at 80 GB)
30-Day Total Cost (USD) 75.20 105.00
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As observed from the table, serverless databases perform well in the most critical dimensions such as
responsiveness, resource efficiency, and overall cost of ownership. The only exception is the cold start
delay which, likely because of needing pre-warming or connection pooling, remains a limitation. In
practice, unless the serverless workloads are consistently high, the resource elasticity and throughput
advantages for most scenarios surpass the downsides of cold starts.

OBSERVATIONS AND ARCHITECTURAL TRADEOFFS
Query Drop Rate Due to Cold Starts and Scaling Lag

The cold start problem still attracts considerable debate in the context of serverless database systems.
While these systems promise elasticity and cost optimization, the cold start period is marked by
increased latency or complete failures of all queries. In this phase of the research, benchmark simulations
were concentrated on the rate of query dropout and its consequences as a function of idle time and
concurrent access.

In the case of serverless systems with various periods of inactivity ranging from 0 to 30 minutes, their
responsiveness following a client query was tested. In this scenario, failures to respond occurred when
no data was sent back within the specified timeout of two seconds, or the system sent a connection error
response. On the other hand, the RDS PostgreSQL instance did not lose any responsiveness as it
remained provisioned, demonstrating the persistent infrastructure advantage.

Observations from the analysis indicated that cold starts with Aurora Serverless began to incur notable
failure rates past the 10-minute idle threshold. As illustrated in Figure 8, failure rates increased
exponentially with the duration of idleness, reaching almost 30 percent after a full hour. The majority of
failures appeared to be due to the slow provisioning of computing resources, or too little capacity buffer
buffers during immediate concurrent surge oligopolies. More curiously, not all failures exhibited latency
increases; some were outright denials of connection, most notably during peak latency shifts when
autoscale decisions stalled.
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Figure 8. Failure rate curve under cold start stress test

Figure 8 illustrates a smooth failure rate curve representing query failure as a function of idle time. There
is a clear step function at 0 minutes of inactivity where no failures were observed. After a brief span of
inactive time, by the 20 minute mark, failures climbed to over 8 percent, plateauing to critical levels
between the 45-60 minute window. This observation points towards the extent of a serverless
architecture's cold resource rehydration lag in correlation with a drop rate threshold serving minimally
viable SLA conformance in real-time systems.

The compounding issue here is scaling lag. In serverless settings, “cold start” micro delays—brief pauses
under load to raise compute resources—may happen even when there is no cold start. These delays in
resource scaling, which typically fall within the range of hundreds of milliseconds to a few seconds,
pose serious challenges to financial trading platforms and IoT telemetry systems. Although responsive
to changes in load, the autoscaling mechanisms predictively compute metrics like CPU usage or active
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connections, which are used as triggers for scaling. Their absence of foreseeing capabilities introduces
the empty resource allocation window where resource provisioning lags incoming requests causing
temporary resource congestion followed by packet loss.

In real-world scenarios, this emphasizes the need for scheduled architecture self-aware scaling,
connection reuse, and pre-warming approaches. Packet loss behavior can be mitigated by setting
minimum boring baselines or pooling ACUs. These adjustments do improve response times by
tightening the cold donut gap, but they also offset the cost efficiency the serverless architecture aims to
provide. Hence, the balance between responsiveness and cost efficiency is a design-level choice for
system builders.

Snapshot and Backup Recovery Benchmarks

The assessment focus on the speed and consistency of the backup recovery was equally important while
evaluating operational metrics for this study as it is one of the key measures of fault tolerance and
resilience of a system. Both serverless and RDS systems employ snapshot-based recovery, but their
internal architectures differ so that the system’s load and the storage footprint apply different recovery
behaviors.

In this benchmark, the augmenting storage sizes snapshot between 10 GB and 120 GB were taken and
restored in separate environments to isolate and measure recovery times. The recovery procedure
consisted of creating a new database instance and restoring log files to achieve a consistent state
transactionally. Only successful recoveries during nominal conditions were counted for measurement
and all edge case scenarios due to user misconfiguration or incomplete backups were ignored.

As demonstrated in Figure 9, serverless databases have a clear performance advantage over RDS
PostgreSQL for all tested storage sizes. For instance, recovering a 60 GB snapshot took around 6.5
minutes in Aurora Serverless, while RDS took over 10 minutes. At 100 GB, serverless systems still
completed recovery in under 10 minutes while RDS was still over 16 minutes. This performance
differential was attributed to Aurora’s log-structured, distributed storage engine with its peculiar
compute and storage rehydration. Aurora’s compute and storage rehydration decoupling permits log
parallel replay which lowers restore latency.
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Figure 9. Backup recovery time vs storage footprint

Figure 9 illustrates the serverless recovery time is more linear compared to RDS’s more exponential
profile. This latter difference is particularly relevant in a disaster recovery or continuous integration
context where backups are rotated and restored rapidly as part of routine activity. Serverless platforms
allow for less than whole binary copies due to the use of snapshot deltas and tiered storage, thereby
enabling more granular recovery.
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The cloud-native nature of serverless systems which favor immutability and statelessness serves as an
architectural advantage. Zero coupling between compute and storage improves recovery task processing
which can be done at any compute instance with only minimal coordination. Any clustered compute
instance can be used. In contrast, RDS has to reallocate a complete database instance, validate the
filesystem, and restore replication paths which all elongate recovery windows.

There is, however, a trade-off in complexity arising from the improved recovery time of serverless
platforms. Developers have less control over the timing, granularity of the durability tiers, and snapshot
mechanisms. Custom backup solutions or retention policies may not be implemented without proprietary
platform automation tools or proprietary APIs.

Regardless of these constraints, serverless systems excel under the modern cloud infrastructure limits
showcasing resilience, especially in multi-tenant contexts, or CI/CD pipelines where swift rollback is
crucial.

Write-Heavy vs Read-Heavy Performance Variance

The final dimension underscored analyzing the behavior of serverless and provisioned database systems
concerning different patterns of read versus write intensity. In practice, most application workloads tend
to be either deeply read-centric or write-centric. Evaluating performance variance under each of these
loads is vital to answering the deployment considerations.

For the experiment, two synthetic workloads were created. The read-heavy workload was composed of
85% SELECT queries and 15% INSERT/UPDATE/DELETE operations. The write-heavy workload
inverted this proportion to 75% write and 25% read. These scenarios were tested on both platforms at
moderate concurrency of 200 QPS held for 15 minutes.

Overall, results indicated serverless databases outperformed other systems under read-heavy workloads.
Their ability to horizontally scale reading compute containers and make use of certain caching strategies,
like Aurora’s reader endpoints, allowed latency to be maintained under 40 milliseconds even at sustained
load. In contrast, RDS PostgreSQL was throttled by its provisioned replica count, suffered higher median
read latencies of approximately 62 milliseconds, and increased CPU load as the number of connections
grew.

Yet, where writing was the focus, performance shifted in Serverless frameworks. They proved most
capable at burst handling during the initial write flows, but over time, strain from sustained writes
steeped burdens on log flushing and compaction subsystems. During log segment rollovers and storage
checkpoints, latency spikes were noted. Although many users would not notice these operations vis-a-
vis the background workings, they would introduce noise in terms of percentile latency. During these
periods, median write latency increased from 38 to 57 milliseconds while RDS PostgreSQL stayed level
around 48 milliseconds.

All described changes are captured in Table 3, which explicates the annotation breakdown of the SLA
violations and different anomalous events as classified within the test runs. This table presents five major
classes of performance violation starting from cold start timeouts to snapshot lag and subsequent query
drops in the rhythm during rehydration bursts.

Table 3. SLA violation categories and anomaly statistics

SLA Violation Category Serverless (Count) | RDS PostgreSQL (Count)
Cold Start Timeout 8 0
Scaling Delay > 2s 5 1
Snapshot Lag > 5m 2 4
IOPS Saturation 3 6
Query Drop during Rehydration 7 1
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Table 3 strengthens the broader model insight for serverless systems’ elastic scaling and recovery
capabilities, agility is accompanied by greater performance variability and risks of transient performance
anomalies. While more stable, RDS systems sacrifice agility for predicable, stable throughput. These
systems suffer from idle resource conditions and slow recovery trajectories.

Practically speaking, this means that application architects have to make paradigm decisions based on
specific workloads. While serverless systems fit best for bursty, read-heavy, latency-tolerant workloads,
RDS instances may be preferable in constrained environments where consistency, regulated SLAs, and
bounded envelope performance are required.

To summarize, this section has demonstrated the strengths and weaknesses of serverless database
systems as scrutinized through the lens of practical operations. Empirical illustrations in Figures 8 and
9, and Table 3 provide the balanced architectural rationale to aid system designers into assessing
performance stability and recovery interplay with cost and control.

CONCLUSION AND FUTURE TRENDS
Summary of Key Results and Cost Optimization Insights

The scope of this study focused on the assessment within the context of the serverless and provisioned
relational systems, including evaluating the RDS PostgreSQL’s operational performance, system
scalability, and cost efficiency. Simulation benchmarks also proved that serverless models significantly
outperform provisioned ones in fluctuant environments for autoscaling and storage elasticity, especially
in regard to query throughput. Aurora Serverless v2 was notable for maintaining strong performance
with increasing levels of concurrency, achieving up to thirty percent reduction in query latency while
delivering twenty-eight percent savings over the cost in a month’s cycle. These benefits were most
striking in scenarios dominated by read requests and bursty workloads where efficient real-time compute
provisioning and decommissioning maximized efficiency. Empirical evidence from this research shows
that demand variable applications in cost-sensitive environments are best served by serverless platforms.

Migration Guidelines for Practitioners and Architects

In addition to the benefits mentioned earlier, transitioning to serverless databases has some architectural
caveats. Scaling lag alongside cold starts and transient query failures were noted, particularly with
compute provisioning starting from idle states. For low-latency and mission-critical systems, these
problems can lead to SLA violations unless mitigated by architectural redesigns. For practitioners
planning a migration, we recommend the use of pre-warming strategies, persistent connection pools, and
redundant query routing. It is equally important to examine workload profile characteristics prior to
migration. For systems that are write-heavy or require strict consistency, hybrid configurations where
serverless readers are coupled with provisioned write masters can be optimally balanced. In addition,
observing cost variance relative to running expenses should be closely monitored in conjunction with
proprietary autoscale APIs. With the described approaches, elasticity and minimal operational burden
benefits of serverless databases can still be retained alongside predictability of the system.

Roadmap: Toward Serverless in Multi-Cloud, Al-Powered Workloads

Developing cloud-native systems will provide opportunities for newer serverless databases which will
be compatible with multi-cloud environments, Al-enhanced frameworks, and federated data-processing
infrastructure. The upcoming innovations focus on Al-powered autoscaling engines that forecast traffic,
compute resource requirements, analyze the workload's cyclical patterns, and make resource allocations.
Moreover, support for distributed multi-region replicas and orchestration triggered by events across
cloud boundaries will enable more sophisticated serverless systems. Enhancements are anticipated to
support real-time loT analytics, decentralized applications, Al model training pipelines, and other
emerging use cases. The databases using serverless architecture will mark a turning point in reactive
scaling and the ability to self-adjust costs, response time, regulatory considerations, and governance
across different computing environments in the enterprise data infrastructure.
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