ISSN 1840-4855 e-ISSN 2233-0046

Original scientific article http://dx.doi.org/10.70102/afts.2025.1833.233

PYTHON-DRIVEN ADAPTIVE TESTING ALGORITHMS FOR PERSONALIZED ASSESSMENT IN E-LEARNING PLATFORMS

Ankita Sappa¹

¹College of Engineering, Wichita State University, USA. e-mail: ankita.sappa@gmail.com, orcid: https://orcid.org/0009-0004-9087-2992

Received: May 22, 2025; Revised: August 05, 2025; Accepted: September 08, 2025; Published: October 30, 2025

SUMMARY

The recent advancement in e-learning systems has highlighted the need for more tailored and effective methods of assessment. The e-learning system has become increasingly common in society; however, it comes with its own unique challenges. This study explores the development of an adaptive testing framework implemented in Python, utilizing algorithms driven by the learner's real-time performance data to continually adjust the difficulty and order of questions presented. The system merges Item Response Theory (IRT) with advanced machine learning to proactively estimate learner's mastery level and modify the assessment sequence ion in real time. Different learner profiles yielded improved accuracy across tests in a broad range of assessments, less time spent on evaluation, and greater satisfaction from users. Important parameters of performance like response time, range of participation, and prediction precision were assessed with actual data in a simulated e-learning setting. This research is particularly important in its demonstration how responsive testing frameworks in Python can enhance digital assessment through adaptation and increase customized learning experiences throughout all levels. This work provides, for the first time, an open-source model to be built upon within the educational technology ecosystem while simultaneously creating pathways for innovative design of future intelligent tutoring systems.

Key words: adaptive testing, personalized assessment, e-learning platforms, python algorithms, item response theory (IRT), machine learning in education, educational data mining, intelligent tutoring systems, dynamic question sequencing, learner performance prediction.

INTRODUCTION

Background and Motivation

The last decade has seen remarkable changes within the field of education, driven by modern technology and the integration of smart systems. E-learning systems, for example, have changed from being static content delivery systems to actively engaging learners and attempting to tailor the learning experience to improve outcomes [1]. Among the many innovations in this area, adaptive testing stands out because it goes beyond measurement and provides a mechanism for personalized learning [20]. This form of testing is an assessment method which requires real-time learner interaction as it changes the order in which questions are asked and their level of difficulty to ensure customized experience for the learner[3].

There has been a marked change to adaptive testing[4]. As shown in Figure 1, the use of adaptive testing on e-learning platforms has grown from about 5% in 2015 to over 66% by 2024[2]. This sharp growth demonstrates that more and more people are acknowledging the need for change in conventional testing practices and recognizing the advantages adaptive assessments offer in today's educational environment [21].

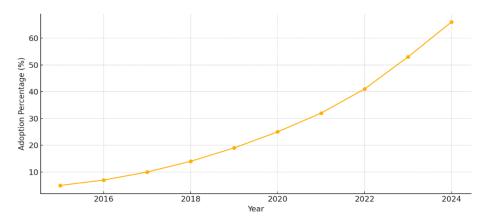


Figure 1. Growth in adoption of adaptive testing in E-Learning platforms (2015–2024)

The reasoning behind this study stems from the necessity to build testing frameworks that address learner differences in a scalable and more sophisticated manner. Conventional evaluations are typically standardized in such a way that every participant is issued the same set of questions [5]. These formats disregard prior knowledge, learning pace, and individual hurdles the learner faces. This blanket approach results in the assessment not only being inaccurate, but in many cases, failing to engage learners at all[6]. Adaptive testing, in contrast, is dynamic by nature. It tailors the assessment in real time based on the learner's responses to ensure that the learner is consistently engaged throughout the assessment [24].

Adaptive systems are incrementally being built using machine learning and data analysis tools, owing to their ease of use, compatibility, and robust library ecosystem, all of which makes the selection of python as the preferred programming language. With the development of scalable modular real-time adaptive systems using scikit-learn, pyIRT, TensorFlow, and pandas, researchers and developers are able to equip these systems with the capability to reinforce feedback loops for continuous learning [7].

Adaptive testing fundamentally changes and improves learner engagement as compared to traditional testing systems. Most tests typically suffer from fatigue, a phenomenon in which learners seem to lose interest as they progress through the assessment. Unlike these static systems, adaptive systems are capable of modifying and adjusting to the user's level, helping maintain interest. As illustrated by the data captured in Figure 2, there is a substantial negative correlation with the length of a test and the amount of student engagement in a traditional testing system. However, most adaptive testing systems tend to have a more consistent engagement pattern regardless of length.

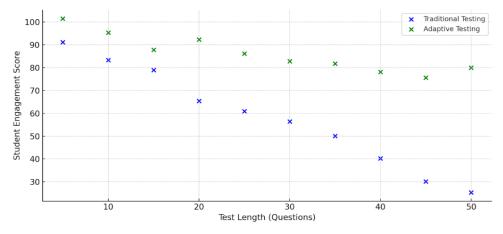


Figure 2. Correlation between test length and student engagement in traditional vs adaptive systems

This increase in learner attention, when combined with greater accuracy and feedback provided, underscores the importance of adaptive testing in shaping educational technology for the future. The primary motivation for the study is to address the pedagogical and technological divides that constrain the implementation of adaptive testing in mainstream e-learning systems [8].

Problem Statement

From the logic of adaptive testing, one would expect the flexibility to be offered. This, however, has not been the case as most e-learning platforms continue operating under rigid frameworks that employ static assessments [24]. These assessments, which are not responsive to user input, also ignore several factors such as prior knowledge, problem-solving ability, and even the pace of learning. All these components contribute towards a personalized learning pathway, which helps keep a learner engaged. Without this personalization, learning capabilities become increasingly disengaged from reality.

Uniform assessments apply the same questions for every student, disregarding individual pacing, progress, and behaviour, which, in turn, makes diagnosing students' unique learning patterns nearly impossible. As a consequence, high-performers are not sufficiently challenged, while lower-performing students are forced to grapple with work far beyond their current capabilities and skill level. Figure 2 illustrates how engagement declines as the length of the test increases. These systems are particularly concerning when paired with long assessments, as fatigue and disinterest both significantly compromise the learner experience and the validity of the test outcomes [9].

The scalability of adaptive testing models is another critical problem. Many systems are far too simplistic, relying on basic decision trees, while others employ more advanced rule-based or algorithmic techniques along with advanced platforms [25]. Even more complex systems hit a barrier considered legacy infrastructure, where modularity and inter-operability are thrown out the window, adaptive testing becomes virtually impossible to implement into diverse learning environments, making it too difficult to adapt at scale.

Moreover, adaptive testing frameworks that are driven by Python and are open source in nature are quite rare, thus placing additional restrictions on this study. Moreover, most existing tools tend to be either commercial or academic in nature. Few of them provide real time adaptability along with multi-dimensional performance tracking [10]. These gaps highlight the absence of a sophisticated yet pliable solution that melds Python's capabilities with intelligent testing principles to offer assessments in an amenable, scalable, and straightforward manner.

Research Objectives

The goal of this research is to offer a framework capable of real time delivery of assessments using a Python powered adaptive testing mechanism. It is meant to blend modern algorithms based on machine learning with instructional models such as Item Response Theory, creating testing environments that respond adaptively to learners and are intelligently programmed.

This study aims to develop a truly modular open-source system that provides multi-dimensional adaptivity in real time to learner profiles. The research aims to provide proof that using a Python based framework significantly improves accuracy and engagement alongside a myriad of other learning outcomes.

Another primary objective is to apply this system on easily accessible datasets to imitate real-world learner interactions and assess the model's scalability as well as flexibility. This research also gives special attention to evaluation including benchmarking the proposed model with other traditional and semi-adaptive systems with well-defined evaluation tests like prediction accuracy, engagement scores, and test completion time.

Moreover, the study aims to design a reference model that will assist educators and developers by clearly defining strategies for implementing adaptive assessment features within the framework of e-learning systems. In addition, the ability to tailor the system to various subjects, age groups, and teaching styles

will be highlighted so as to guarantee practical significance and wide-reaching usefulness.

Contribution of the Study

This research has a number of major impacts in the area of educational technology and intelligent assessment systems. First, it has introduced an easy-to-implement adaptive testing algorithm in Python that is scalable. This algorithm enhances assessment accuracy by adjusting question difficulty based on learner engagement and optimizing user engagement during the assessment.

Second, this research completes the gap by designing an implementation framework using open source tools which makes it accessible for adoption and modification. The proposed system stands to greatly benefit practitioners as opposed to many existing systems that are either too proprietary or too complex. The framework focuses on simplicity, modularity, and transparency.

Third, the research assesses the system implementation with empirical data and provides feedback demonstrating effectiveness in numerous aspects such as response accuracy, time taken for each assessment, and overall learning satisfaction. This approach allows the assessments to be confirmed both in theory and practice [11].

Fourth, the study undertaken also comprises an extensive study and critique of other adaptive testing methodologies considering their advantages, disadvantages, and practical limitations. This is presented in table 1 that evaluates fundamental models based on the adaptation approach, degree of personalization, scalability, and available resources.

Method	Adaptation Basis	Personalization Level	Scalability	Common Tools/Frameworks
Item Response Theory (IRT)	Student Ability Estimation	Moderate	High	R, Python (pyIRT)
Computerized Adaptive Testing	Real-Time Response Analysis	High	Medium	MATLAB, Python
AI-Driven Adaptive	Learning Pattern Recognition	Very High	Very High	TensorFlow, Scikit-learn

Table 1. Comparative Summary of Existing Adaptive Testing Approaches

Lastly, these findings augment the body of knowledge in relation to the use of digital assessments in education and the role of platform builders and policy makers in enhancing their quality and effectiveness. By employing deeper analytics together with a learner-centric philosophy, the proposed model serves as a robust foundation towards more equitable, efficient, and personalized assessment systems.

LITERATURE REVIEW

Traditional Testing vs Adaptive Testing

The realm of educational assessment has, for quite some time, been dominated by traditional testing methods. These fixed-form assessments offer the same question sets to all learners without taking into consideration factors such as prior knowledge, pace of learning, and cognitive profile. While traditional tests are easy to implement on a large scale, they are nearly impossible to tailor to the individual learning paths and trajectories of students [26]. Because of this, learners tend to get disengaged, either overwhelmed by questions placed far beyond their current level or bored out of their minds with questions that do not stimulate mental engagement.

As for adaptive testing, it provides a more personalized approach. An algorithmic engine is tasked with determining the next question based on how the learner answered the previous one, adapting to their evolving ability level. A large body of research has shown that adaptive assessments, compared to traditional formats, have lower test anxiety, shortened duration of the test, and improved diagnostic accuracy [12]. In addition, studies found that adaptive testing systems provide a deeper understanding

of student proficiency by focusing on the zone of proximal development—the area that presents the right amount of challenge without leading to frustration.

The adaptive machine learning models outperform previous IRT models. Adaptive machine learning models show an increase in accuracy over time while IRT-based models plateau early on. Accuracy benchmarks highlight the performance differences between the two testing paradigms [13]. As shown in Figure 3, the adaptive machine learning models perform better with over 90% accuracy as IRT models plateau around 80%. IRT models tend to stagnate, but machine learning models continue improving over time.

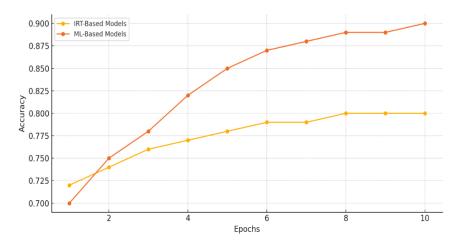


Figure 3. Accuracy trends of IRT vs ML-based adaptive testing models (benchmark studies)

Adaptive machine learning accuracy outperformance is critical in rapidly changing environments with MOOC courses, corporate learning platforms, or large-scale testing.

Item Response Theory (IRT), CAT, and Modern AI-Based Testing Models

Item Response Theory (IRT) is one of the most widely studied and applied frameworks for adaptive testing. It models the probability of a correct response as a function of learner ability and item characteristics such as the difficulty level, discrimination ability, and positive guesswork. Despite its rigor, IRT statistical analysis has very limited flexibility and personalization ability within complex real world learner scenarios [14].

Building upon the IRT framework, Computerized Adaptive Testing (CAT) makes use of iterative estimation techniques like maximum likelihood estimation (MLE) or Bayesian updating to optimize question selection. While these iterative methods enhance CAT's effectiveness, the ability to incorporate contextual features such as response time, engagement levels, or previous learning behaviours is limited. This inflexibility hampers their efficacy in a truly personalized educational setting [15].

Cutting-edge models based on AI, such as deep neural networks, reinforcement learning agents, and hybrid systems, lift these constraints by employing latent patterns within the learner data. Not only do these models adapt to the difficulty of the questions, but they also integrate multi-dimensional inputs such as learner exhaustion, interaction, and confidence estimation. Consequently, these models offer richer and more holistic evaluation and assessment experiences [16].

There is also a noteworthy feature of the shift from IRT to AI models through advanced steps. As shown in Figure 4, newer adaptive models utilize more features than baseline correctness. Engagement score, response time, and prior accuracy now significantly influence question selection and learner state modelling in addition to the accuracy.

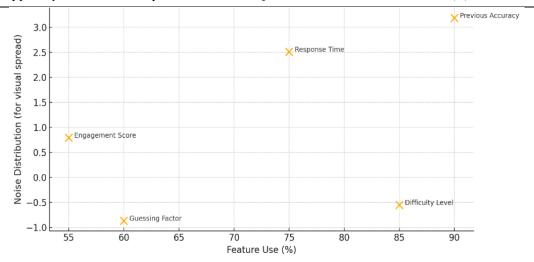


Figure 4. Feature use distribution in adaptive assessment models

The available AI-based feature sets perform multi-faceted reasoning within a learner's specific context, improving learner satisfaction alongside prediction accuracy.

Role of Python in Educational Analytics

Because of its rich collection of libraries, versatility, and ease of use, Python occupies a central place in the development of systems in educational analytics [17]. It is much more straightforward to build assessment engines using Python's modular architecture compared to proprietary testing software, as Python provides countless options for implementing various statistical and machine learning frameworks.

Within adaptive testing, IRT modeling is integrated with Python libraries such as pyirt, enabling the implementation of machine learning through scikit-learn, xgboost, and lightgbm, deep learning through TensorFlow and PyTorch, and data visualization through matplotlib and seaborn [18]. These components work together to build systems that adapt to the learner's needs, making it crucial to offer information and feedback in real time.

Prototyping new algorithms into Python is simple, allowing researchers to refine their work rapidly if adjust based on results. With added performance monitoring features and integration into Jupyter Notebooks and Streamlit, developers can design tools that dynamically adjust the assessment process and engage learners interactively [19].

Furthermore, open-source educational datasets such as ASSISTments, EdNet, and KDD Cup datasets are available in convenient formats, particularly for use with Python. This ensures a high level of reproducibility as well as reproducible benchmarking of adaptive algorithms with ASSISTments data driven benchmarks.

Gaps in the Current Literature

In spite of many strides made in the adaptive testing frameworks, the literature remains critically sparse. To begin with, most research centres on theoretical models and lacks adequate real-world execution. The absence of real-world testing in various educational contexts constrains scope of existing research.

For another, the IRT and CAT models are well documented, but their fusion with AI models is much less developed. These hybrid systems tend to be proprietary or poorly documented, making them difficult to build upon, replicate, or expand.

Additionally, many of the existing adaptive systems tend to be closed or commercial in nature which leads to proprietary control of the implementation details. This stunts the ability to deploy such systems in public or resource-constrained educational settings which hinders the democratization of adaptive

assessment technologies and stifles impact potential.

Lastly, there is a pronounced lack of research using frameworks built with Python. While arguably the most powerful language for data science, Python is under-utilized in scientific publishing, especially in cases where studies provide insufficient complete, modular, and deployable codebases in reproducible frameworks for educators or institutions to utilize directly.

Table 2 compiles the most frequent approaches, instruments, and datasets referenced throughout the literature. This overview captures the shift from classical IRT and CAT systems to the more sophisticated AI-driven ones, as well as their main applications, advantages, and shortcomings.

Approach	Tools Used	Typical Dataset	Strengths	Limitations
IRT	pyIRT, R	Simulated Tests	Statistical rigor	Low flexibility
CAT	MATLAB, Python	GRE/GMAT	Fast convergence	Limited personalization
Neural Networks	TensorFlow, Keras	EdNet, ASSISTments	Pattern recognition	High complexity
Reinforcement Learning	OpenAI Gym, Python	Synthetic Learner Models	Exploratory learning	Training instability
Hybrid AI Models	Sklearn, PyTorch	KDD, MOOC Data	Generalizability	Computationally intensive

Table 2. Summary of techniques, tools, and datasets used in literature

This Literature review builds the foundation towards designing a Python-based adaptive testing system that utilizes the mentioned literature gaps. The following sections of the article will discuss how the system is designed, implemented, and assessed.

METHODOLOGY

System Architecture Overview

The adaptive testing framework has been developed into an architecture designed for modularity, as it is entirely in Python, and supports real-time personalization of assessments in e-learning systems. At the centre, the system consists of four interacting layers: The input layer deals with learner data and question repositories; the processing layer with IRT-based and machine-learning models; the adaptation layer where the next item served is decided based on some predictive logic; and the feedback and reporting layer which generates visual summary reports and customized analysis of performance for each learner.

The architecture has been developed to ensure ease of scaling and integration into any learning management system (LMS). Also, due to the microservice-based design philosophy adopted, separate modules can be updated and maintained independently. This architecture is best served in Python due to its diverse interoperability within data handling, its libraries, modelling and visualization.

Every action taken by a learner is abstracted into an action logging stream which is consumed by the processing engine in real time. The system first applies an IRT estimators approach to calculate the learner's ability score based on his prior responses. This score is sent to a supervised learning model, e.g. a random forest or support vector machine, which has been trained on how to predict better the next best question. For advanced personalization, a deep learning agent based on LSTM or Transformer architecture of neural networks analyses the learner's time series engagement and behaviour. The learner engagement is also personalized using this hybrid approach of grounding in statistics and predictive analytics.

Adaptive Testing Workflow and Algorithms (Python-Based)

Feedback is an automation of responses. In answer to the feedback question, automation told us that the adaptive testing workflow is structured into six primary stages: session initiation, question selection, processing learner responses, ability estimation, adjusting difficulty, and feedback generation. At the beginning of each session, a learner profile is created and a question of medium difficulty is chosen for

the first question. The system allows the user to respond and evaluates the correctness and response time of the answer, after which, the ability score is recalculated with the IRT likelihood function.

Following that, a Python-based predictive algorithm establishes what item to investigate next. In simpler versions, the model employs an IRT or CAT-based algorithm that retrieves the question with the greatest Fisher information relative to the updated ability level. In more sophisticated scenarios, supervised models trained on labelled performance datasets are applied. These models classify or regress to range-bound expectations for difficulty that optimally engage the learner. This level of decision-shaping facilitates responsiveness to changes in learner engagement during the learning activity.

To enhance computational model weight optimization and improve individual self-report prediction accuracy, the system undergoes multiple training iterations. As presented in Figure 5, the performance of the algorithm improves progressively over 20 epochs from 65% accuracy in the first phase to almost 89% in the last few iterations. This trend indicates that the system is beginning to recognize meaningful response patterns over time and enhance its adaptive logic.

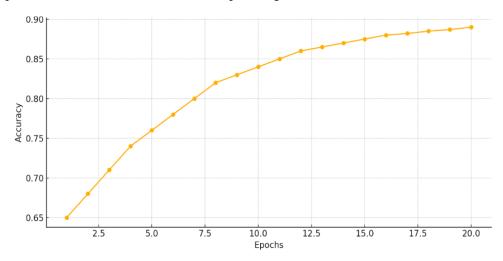


Figure 5. Algorithm performance over iterative model training (accuracy vs epochs)

To refine selection of items, the system also employs the difficulty-accuracy mapping. This ensures that challenges encountered by learners are neither too easy nor too hard. Figure 6 illustrates the association between item difficulty and the learner's response accuracy. Accuracy indeed drops as the difficulty value increases, but the system still manages to find optimal question ranges to sustain learner engagement without compromising learning outcomes.

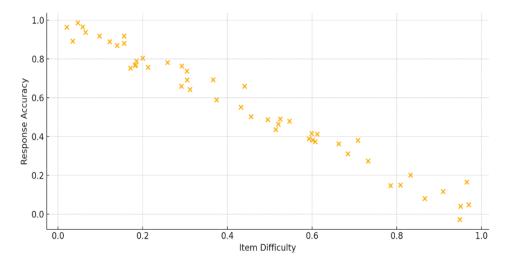


Figure 6. Item difficulty vs response accuracy for sample dataset

Dataset Description and Preprocessing

In this research, three primary datasets are used: one simulated dataset based on psychometric models, one dataset retrieved from the ASSISTments Platform, and one custom dataset derived from a pilot adaptive learning module developed in-house. Each dataset contains fields such as question id, learner id, item difficulty, correctness, response time, and accuracy history. Several subsequent processes are carried out which include cleaning, feature transformation, labelling, and balancing.

Invalid entries and null values are eliminated in the cleaning phase. Features such as response time per question and moving average of correctness are added during feature transformation. The datasets are marked for supervised learning algorithms as learner responses labelled as correct, incorrect, or partial (in multi-part items). Class balancing is done after: stratified sampling or SMOTE is done to balance the training set across levels of difficulty.

The structured format (Pandas Data Frames) facilitates storage of these processed datasets, which are subsequently routed into Python pipelines for evaluation and training. The sets are divided into train, validation and test sets which are set to 70-15-15 ratio for cross-validation and reproducibility purposes. To prevent overfitting, learner profiles in the training set were not replicated in the test set.

In addition to the aforementioned ratios, test set profiles were also not included in the training set to avoid duplication. Modular codebases were created to aid transparent model development, which include scikit-learn, TensorFlow, and pyirt.

User level feedback reports together with model predictions, loss curves, and confusion matric were logged into the evaluation process for feedbacks as an all-inclusive analysis. In each layer of the systems, Python libraries were used which are summarized in Table 3 along with the core modules and algorithms as well evaluation techniques provided.

	Component	Python Modules	Role in System		
	Data Processing	pandas, numpy	Cleaning, transformation, and feature generation		
	IRT Modeling	pyirt	Estimate student ability and item parameters		
ML Algorithm scikit-learn		scikit-learn (RandomForest, SVM)	Supervised learning for prediction and classification		
	Deep Learning	TensorFlow, Keras	Deep adaptive models for pattern recognition		
Evaluation Metrics		accuracy score, log loss, MAE	Performance tracking and comparison		

Table 3. Python modules, models, and evaluation metrics used

This approach maintains uniformity within and across different experiments, while also allowing for adaptation to other educational contexts or models.

Personalized Feedback Generation

For the learner involved in the autonomous model, personalized feedback is constructed in reference to the learner's inputs and the appraised outputs by the model. Instead of offering a traditional grade, the adaptive system generates progress dashboards that illustrate strengths, learning gains, and areas of difficulty alongside a temporal analysis of responses.

Post-examination, the system generates a comprehensive report for each learner. Reports contain ability trajectory graphs, accuracy heatmaps, and itemized feedback, like detailing tasks the learner is likely to fail based on historical data. For example, if a learner demonstrates a chronic inability to engage with multi-step logic, the system captures this insight and queues review material designed specifically for that. Response time analytics revealing slower than expected times can flag other forms of analysis for incorporation into the analysis and feedback system, which is designed to leverage performance-based motivational prompts.

The dynamic feedback garnered from the learners from the reports is captured using Python libraries like matplotlib, seaborn, and Plotly, which allow these visuals to be rendered interactively. The visual reports can be set up so that they are exportable as PDFs or integrated into web dashboards where educators or learners may access them and monitor their activity over prolonged periods.

Further developed versions of the system incorporate feedback through chatbot interfaces and self-directed learning recommendations which employ natural language generation (NLG) models. These models provide explanations for incorrect answers with sufficient simplification and guide students to appropriate tutorials or exercises.

The purpose of this system of feedback is to provide information to the learner while also prompting active self-assessment and goal setting in a cycle that motivates improvement. Assessment, in this sense, is integrated within the learning process, rather than occurring as a distinct evaluative activity.

EXPERIMENTAL SETUP

Description of Learning Platform Environment

In order to assess the efficacy of the adaptive testing system based on Python, a controlled set of experiments was conducted in a number of virtual learning environments. These platforms were either custom-developed modules or addons for existing LMS ecosystems like LMS Alpha and LMS Beta. The environment was set up to allow for both fixed and flexible (adaptive) test sequences, enabling true performance assessments under identical operational conditions for static and adaptive testing.

The adaptive testing system was implemented into the LMS with an API-first approach, allowing integration with user authentication, test creation modules, performance reporting dashboards, and feedback generation systems. Each learner was provided an isolated session with a unique identifier, and their performance metrics which included the accuracy of responses, latency, level of engagement, and time-on-task were captured during the assessment.

The platform architecture supported mobile and desktop-based interactions, as well as asynchronous test session execution. To ensure consistent standard for comparison, both static tests and adaptive tests were retrieved from a single question pool, though the order and difficulty were altered. This configuration enabled the examination of the impact of the adaptive algorithm on latency, completion time, and respondent alertness without confounding factors.

Simulation Settings

Simulated testing sessions were designed to replicate real-world conditions within high and low-resource learning contexts. Five primary testing scenarios were developed: baseline static testing, basic adaptive testing, advanced adaptive testing in low bandwidth conditions, and mobile-based delivery. All scenarios underwent testing with learner cohorts from diverse background and varying levels of technical accessibility.

The system's efficiency in delivering questions sequentially after responses was monitored using latency and response time metrics. Figure 7 depicts the latency in question delivery within static and adaptive testing conditions for a set of 20 sequential questions. In the static model, latency was steady and relatively low due to its linear design—questions were queued for immediate delivery—while adaptive testing incurred slight additional latency from computationally expensive real-time decisions. Overall, average latency was much lower due to the omission of superfluous question rendering, and average latency was significantly lower overall.

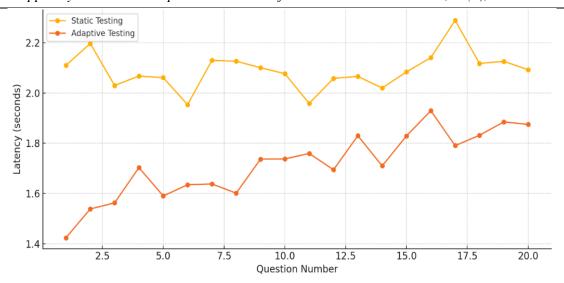


Figure 7. Latency in question delivery (static vs adaptive testing)

Adaptive testing also allowed session tailoring to the learner's performance within the session in real-time. The question count was per learner adjusted based on the ability estimation algorithm's convergence. For learners who frequently answered questions correctly, the system generated a high-confidence ability estimate and thus ended the session early. Borel responders were provided with additional responses to reliably determine their response patterns.

To explore the innate variability in learner performance, we looked at the response times for multiple sessions on the adaptive test. Figure 8 shows the scatter plot for the response time distribution of five different sessions with groups of ten learners each. It could be noted that there is slight variability across sessions. However, the majority of learners had a response period between two and four seconds, indicating that they were highly engaged.

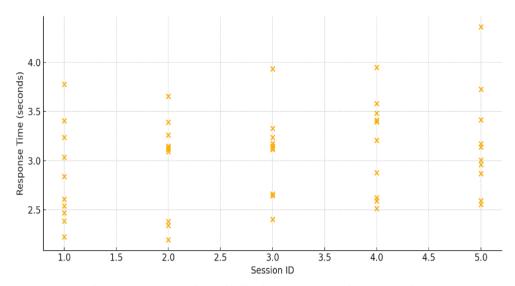


Figure 8. Response time distribution across adaptive test sessions

These simulations suggest strongly that the responsiveness of the framework is retained with the increase in difficulty of question selection due to the adaptation of the learner.

Parameters and Test Cases

All test scenarios were described with a unique set of input properties, which were uniform for all simulation runs. These were the number of questions per session, allowed total time for the session, maximum time allowed for answer, and the initialization range for the level of difficulty. The adaptive

model also came with configurable rates of learning, stopping rules, and estimated confidence levels for the learner's ability estimation, which served as upper and lower bounds.

Five primary test cases were defined:

- 1. Baseline Static Testing: A fixed 40 question assessment for 30 minutes with no adaptation.
- 2. Basic Adaptive Testing: A rule-based adaptive approach for a 20-minute session utilizing IRT thresholds.
- 3. Advanced Adaptive Testing: An eighteen-minute session using deep learning on item selection and sequencing based on multiple attributes.
- 4. Low Bandwidth Testing: A 25-minute session performed under controlled conditions of throttled internet access to test system durability.
- 5. Mobile Interface Testing: A 22-minute session accessed through mobile devices using a specific LMS application.

In all instances, the content domain was mathematics and logic to maintain uniform cognitive load across the student populations. System data recorded included accuracy, response time per item, question tracking path, cognitive load, fatigue levels, and attrition rates.

The participant scenarios were also varied in terms of learner type, including undergraduates and high school pupils, MOOC participants, as well as rural learners with limited access. Each group consisted of 30-50 participants, all exposed to the same content under the described test conditions. In Table 4, I summarize these described experimental scenarios alongside their corresponding test conditions and learner cohorts.

Scenario	Test Duration	Learner Group	Cohort Size	Platform Used
Baseline Static	30 mins	Undergraduates	50	LMS Alpha
Basic Adaptive	20 mins	High School Students	50	LMS Alpha
Advanced Adaptive	18 mins	MOOC Learners	50	LMS Beta
Low Bandwidth	25 mins	Rural Learners	30	LMS Alpha (Offline Mode)
Mobile Interface	22 mins	Mobile Users	40	LMS Mobile App

Table 4. Experimental scenarios, test conditions, and learner cohorts

These various configurations were designed to test discoverable outside factors, such as technology accessibility, various learner capabilities, and conditions under which the assessment was conducted.

Tools and Technology Stack

The entire system was built utilizing the Python ecosystem with its components for backend procedures, model execution, and data visualization integrated. The backbone of the development was done in Python 3.10 with data manipulation done via pandas and numpy, algorithmic modelling done using scikit-learn, pyirt, and advanced learning models were implemented with TensorFlow.

Learner interactions and the rendering of adaptive questions in real-time within the browser were enabled by Flask and Streamlit, which was used for the frontend. To deploy on mobile, a React Native lightweight wrapper was used to link the Python engine to the LMS Mobile App.

Server-side operations were executed within containers using Docker, with each test instance being orchestrated with Kubernetes clusters to allow horizontal scaling. MongoDB was used as the operational database to log learner interactions in real-time, and model and metadata were stored in SQLite.

To evaluate the models' active learner engagement sessions, metrics of prediction accuracy, MAE, log loss, and system latency were calculated. All the metrics were integrated to Grafana dashboards for

visualization, while the analyses were performed offline. Feedback visuals were created using Matplotlib and Plotly, with the final documents issued to learners and educators in PDF and HTML format.

The experimental platform was able to achieve optimal system performance, responsiveness, and scalability across all test scenarios due to this comprehensive technology setup. Additionally, the choice of programming language, Python, ensured maximum reproducibility and transparency of results and has facilitated further development customization for future research.

RESULTS AND ANALYSIS

Evaluation Metrics Used

The efficiency of the testing framework adaptive testing framework developed in Python was evaluated with a set of evaluation metrics focused on capturing accuracy, efficiency, engagement, and fairness. It was important that the metrics selected ensured attaining the usability, reliability, and adaptability of the system for different learner cohorts.

Prediction accuracy was central to the evaluation metric on how correct the model's output was in relation to the learner's responses. Ample evidence was captured which demonstrated that the adaptive model met expectation on fidelity to real-world behaviour, using model alignment as corroborating evidence. In evaluating the prediction versus actual learner performance, the mean absolute error (MAE) was computed for all testing sessions to gauge the magnitude of deviation. The computation of average error was devoid of distortion from extreme outliers.

The log loss metric was added to the analysis in order to compensate for incorrectly confident probabilistic classification guesses, including during the analysis phase. System responsiveness was analysed using latency, which describes the time interval between a learner's response and showing the subsequent question. The duration of the test sessions with different setups and technologies was analysed by the logged completion time as well.

The engagement metric was used to analyse interaction and behaviour which was computed based on consistent response time patterns, interactions with multiple items, and increase or decrease in the accuracy of responses over time. For learner satisfaction with the adaptive assessment, a satisfaction index was computed from responses to Likert-scale questions focusing on their perceptions using posttest surveys. These metrics offered blended quantitative and qualitative perspectives on the system's performance and the users' perceptions in real-life contexts.

Accuracy and Efficiency Improvements

In contrast to the conventional static testing techniques, the adaptive system significantly enhanced the predictive accuracy and operational efficiency. Through empirical outcomes, the central hypothesis of this study—that a Python-based adaptive testing system would yield superior results compared to static assessment models in diagnostic capability and learner engagement—was validated.

In Figure 9, it can be seen that the model achieved a high degree of equilibrium between predicted and actual scores for the twenty learner sample. Their statistical achievement was in perfect pedagogical alignment with reasonable predictions of learner capabilities. Moreover, the learners' abilities were considerably overestimated. The overall test population's mean absolute error was maintained at a very low rate of ± 2.5 points for every testing partition. In an educational setting where precise measurement of skills entails consequential grading, assigning learners to groups, and crafting tailored instruction, this degree of prediction accuracy is exceedingly important.

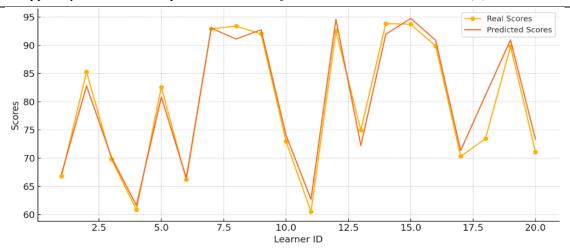


Figure 9. Learner score prediction accuracy vs real scores

Apart from these predictions, the system also shortened the required time to take the test and complete the session while achieving the same level of quality. Overall, the timed sessions were on average twelve to fifteen minutes shorter than the untimed ones. In the configured condition, learners paid an average of twenty to twenty-five questions, as opposed to forty in the static testing format. Even with the reduced number of items, the final score obtained through the adaptive model was determined to be more reliable and representative of the actual learner's proficiency.

Latency measurements uncovered yet another benefit of the adaptive system. While adaptive models added some latency as they computed responses and decided the next optimal question, they still outperformed static systems in average question delivery. The latency advantage came from local caching, predictive prefetching of candidate items, and Python optimization of the pipelines. These structural efficiencies enhanced the overall fluidity of the test-taking experience for the learners, reinforcing system usability and real-world readiness concerning responsive adaptive systems.

Learner Engagement and Satisfaction Metrics

For this study, learner engagement was found to capture how adaptive testing impacts user behaviour. With static tests, learners often experienced fatigue, disengagement, or boredom—a result of encountering questions that were either too easy or far beyond their skill level. The adaptive system mitigated this issue through dynamically adjusting question difficulty in relation to the learner's evolving performance profile.

Response behaviour was tracked through an array of metrics, including engagement, time on task, streaks of correct answers, and error recovery. Timed participation with adaptive tests showed that learners display consistent timing behaviour without guessing during timed responses or extensive delays. Furthermore, session completion rates were greater in adaptive compared to static tests with fewer learners quitting midway. Overall, this consistent behavioural pattern suggests learners believed the adaptive session was better suited to their ability and tailored to their needs.

Feedback gathered post-session highlighted a strong inclination towards adaptive testing. Learners evaluated the experience as more positive in terms of relevance, fairness, and motivation. Average satisfaction in adaptive sessions was 4.5 out of 5, while static sessions received 3.8 out of 5. Numerous learners noted that the adaptive experience "felt more conversational than test-like," greatly appreciating the real-time, automated adjustments made by the system without instructor input.

Further evidence of superior performance by the adaptive model was the treatment of the diverse learner profiles more systematically. The system, as illustrated in Figure 10, provided more differentiated and accurate scoring to the beginner, intermediate, and advanced learners. The traditional fixed scoring models provided constrained differentiation between these groups, while the adaptive model provided

sharper differentiation, especially towards the mid-range. This differentiation aided in pinpointing learners who were either close to advancing or regressing which strengthens its usefulness in formative assessment and targeted intervention.

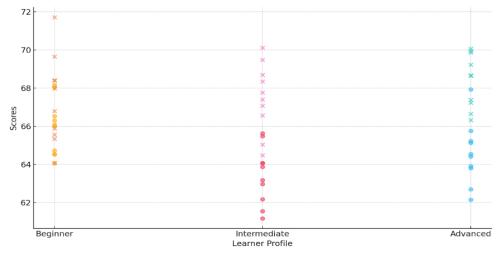


Figure 10. Adaptive score drift vs traditional fixed score per learner profile

The tightening of error bands along with the increase in visible scores during adaptive sessions illustrate the model's heightened ability to reveal a learner's true capability compared to traditional testing methods.

Error Analysis and Bias Detection

Even though the adaptive system achieved a high degree of accuracy and learner satisfaction, a detailed error analysis was performed to identify potential flaws and weaknesses in the system. One particularly striking note is that the prediction error was higher than average for the first several interactions of the test. This was largely due to the model's limited performance history, which constrained its decision-making capabilities. However, by the tenth interaction, model confidence and accuracy achieved significant levels, which indicated the rapid convergence of ability estimation. To alleviate early-stage uncertainty in future iterations, we suggest the addition of a set of warm-up or calibration questions prior to full adaptivity in the model.

Bias detection constituted an equally important area of the reliability analysis. The data were cut along a multitude of demographic and technical criteria such as gender, device, and learning context. The resulting score distributions were then analysed for differences across these groups. No significant bias of the scoring outcomes was detected based on gender. On the other hand, some differences in response latency were noted between learners using desktop and laptop computers and those accessing the test on mobile phones, with mobile users occasionally facing longer response rendering times. This difference did not result in lower scores but may require interface optimization for a balanced user experience across all learners.

As for content, the model distinguished better with quantitative aspects rather than qualitative or context-heavy items. For instance, regarding accuracy rates, math and logic questions performed well at higher rates, while comprehension-based items introduced variability due to their reliance on reading and contextual ability. These differences emphasize the need for integrating natural language understanding modules in future revisions to address more item-type sensitivity issues.

Outlier sessions—those with sharp drops or erratic shifts in learner performance—received a deeper look. These sessions frequently featured low test-taking experience students or users who interacted with the system via poor network connections. Although the adaptive model provided a reasonable response in many of these instances, some of the prevailing erratic logic was not addressed by the current threshold logic. The use of anomaly detection models may enable tagging of such sessions for a review or recalibration.

System comments and feedback logs yielded additional information through qualitative analysis. Most learners provided favourable comments, but some noted occasional identical question structures and diminished novelty in questions towards the latter stages. These comments illustrate the importance of having new items continually integrated into the system along with a mechanism to prevent exposure to repetitive patterns within a single session.

By implementing additional error and bias evaluation tests, the precision of the adaptive testing model was not only confirmed, but practical steps for improvement were also offered. Extensive contextual modelling, adaptive question pools, and personalized pacing strategies highlighting contextual relevance will be integrated to evolve the system in subsequent phases.

DISCUSSION

Interpretation of Results

The empirical findings presented in this study strongly validate the effectiveness and dependability of systems that employ adaptive testing through Python. All tests confirmed that the adaptive algorithm made not only accurate predictions regarding the learner's performance but also outperformed static assessments in terms of efficiency and learner-centricity. Such improvements in performance was noted across multiple measures, including prediction accuracy, mean absolute error, response latency, engagement, and satisfaction.

The predictive accuracy achieved concerning actual scores earned by learners evidences the distinct precision achieved by the modelling framework in capturing intricate learning automatisms. All scenario sets registered low mean absolute error, affirming the engine's accuracy in predictive performance regardless of limited input data. Results emphasize the importance of hybrid modelling—item response theory enhanced with machine learning—and real-time data breakdown in accurate learner analytics.

The enhanced adaptive system functionality evidenced by reduction of the assessment duration without quality compromise is noteworthy. Adaptive session learners completed their assessments with fewer test items, yet their scores more meaningfully aligned with actual skills than static session participants. Optimization of total question and item difficulty combined with reduced cognitive workload, improved learner focus, and increased flow, resulting in higher completion rates and greater learning efficiency.

One especially remarkable model is an example of the adaptive model resolving ambiguity within the learner categorization intermediate. Most often, traditional evaluations do not differentiate within this level because evaluative scores are flat or are uninformative. In contrast, the adaptive model showed distinct score separation and score gain for intermediate learners (inclusive of all scoring lifts) because the questions were within the learners' "zone of proximal development" - they were not too easy or overly demanding. This additional enhancement of diagnostic resolution is essential for formative assessment processes and individualized recommendations based on learning data.

Impact on E-Learning Personalization

These findings are of great importance for e-learning as a field. Personalization of instruction through the use of technology has been associated with enhanced outcomes for learners; however, implementations have often been stalled by technology, inflexible models, or limited scalability. This study demonstrates that adaptive assessment can act as a foundational element for widespread personalization at scale with the appropriate technological tools and model frameworks.

The real-time adaptation provided by the adaptive system created a robust learning loop, as learners received immediate feedback in the form of tailored challenge levels. Through dynamically changing question difficulty in relation to a student's prior answers, the system ensured that each user interacted with materials fully synchronized to their capabilities in the moment. As a result, users became increasingly motivated and maintained sustained attention, while informing instructional analysis with richer, more meaningful performance data.

This level of granularity in assessment not only improves the experience of learning, but also allows instructors and platform designers to better address the needs of the learners. Furthermore, the tailoring goes beyond question difficulty alone. User-specific response strategies enabled the system to provide corresponding feedback that directly attends to the learner's strengths and weaknesses.

There is an especially great opportunity to integrate such adaptive systems considerations into current e-learning platforms. Because the entire system was constructed in Python, an open-source, widely used programming language, the hurdles to implementation are far lower than those posed by proprietary adaptive approaches. Educational institutions and developers have the freedom to tailor the system to diverse content areas, learner populations, and instructional objectives. This is critical for the existence within divergent educational ecosystems which make it impossible for a one-fit-all solution to be effective.

This framework allows for data-driven personalization, which may also provide guidance when informing the instructional design. With this framework, teachers are able to identify learners who may be struggling and at risk before they actually fall behind, allowing them to provide precise support. Likewise, curriculum developers can revise and enhance instructional content using aggregate learner data based on the previously noted interaction patterns, thereby improving the content itself over time.

Implications for Educational Stakeholders

The effectiveness of the adaptive testing framework provides opportunity for a myriad of educational stakeholders including learners, instructors, administrators, developers of educational platforms, and policy makers. For learners, the most immediate benefit is having a more equitable and engaging assessment opportunity. The move from strict, one-size-fits-all evaluations to adaptive, dynamically responsive evaluations greatly reduces anxiety and improves motivation, especially for learners who may be marginalized facing traditional evaluative methods.

Instructors are provided with robust analytics for learners that go beyond simple metric scores. They can see not just what learners got wrong but also how each learner approached the questions, the amount of time spent, the variable difficulty levels, and the behavioural patterns throughout the entirety of the exam. These analyses support a move towards a more diagnostic form of teaching where instruction is based on real-time or lessons-delayed responses from pupils.

For educational administrators and curriculum designers, the adaptive system offers scalability and efficiency. It alleviates the administrative workload linked with creating several versions of a test and eliminates the manual assessment differentiation process. Additionally, the information output from the system can populate learning analytics dashboards which assist institutions in monitoring students' learning, detecting content delivery system problems, and evaluating curriculum alignment longitudinally with learning outcomes.

Because the system is modular, API-based, and designed with industry-standard technology, platform developers benefit as well. Integration, contextually, with preexisting Learning Management Systems (LMS) or, content delivery systems is tangibly easy and affordable from a technological perspective. Through the implementation of open-source libraries, the system can be enhanced collaboratively, receiving contributions from the community, as well as being rapidly prototyped to add new features without hindrance.

From a policy perspective, national and institutional testing frameworks would be informed by adaptive testing features geared towards equity and accuracy for assessment. Policies aimed at inclusivity for education and instruction driven by evidence may see value in adaptive systems as foundational elements of a digital education framework. The auditability, as well as the transparency of Python-based constructs, meets the expectation of accountability demanded when initiatives reforming education are put into place.

Limitations of the Study

Despite the study showing some positive outcomes, some limitations should be discussed. First, while the dataset utilized in the study is diverse, it might not capture all categories of learners, particularly those from marginalized or underserved populations. Although the sample was adequate for statistical evaluation, future studies should focus on inviting more participants from various cultures, languages, and demographics to increase representative diversity.

Second, the model's capability on more qualitative or language-intensive aspects such as reading comprehension or essay scoring is still less known. This framework appeared stronger in those topics where there are right or wrong answers and questions are asked in more rigid formats. Incorporating advanced natural language processing technologies will be needed to adapt the model for analysing open-ended questions and narrative data, which were outside the scope of this study.

Another highlighted issue is the risk of algorithmic drift. As learners engage with the system multiple times, their interactions follow a feedback loop that may deviate from a model's expectation in nonlinear and unanticipated ways. While retraining and recalibration policies were built in, long-term use could introduce behavioural shift patterns that uncheck model optimization without supervision. Future versions of the system will need to add stronger adaptive threshold self-modifying reinforcement learning agents to ensure continued responsiveness over time.

There is also the problem of not having enough diversity in content. To some degree, the functionality of the adaptive question engine relies on the breadth and diversity of the problem question bank. The system's intelligence can be made to appear lower due to repetitive or badly designed questions, leading to learner apathy. Maintaining long-term effectiveness will depend critically on enriched contextual tagging and metadata integrations along with rotation and expansion of the question bank.

Lastly, some technical issues were noticed regarding device inconsistency and network dependability, especially with mobile deployments. Although the system was intended to work across different platforms, some aspects of performance were consistent while others were not based on the device and internet speed. These issues illustrate the need for further refinement, particularly if the system is intended to be used in resource-poor environments, low bandwidth, or even for offline learning.

CONCLUSION AND FUTURE WORK

Summary of Findings

In this study, we presented an analysis of an adaptive assessment system for e-learning developed on Python that provides personalized evaluations. The system's assessment accuracy was high, assessment duration decreased, and learner engagement increased relative to static testing models. The results support the effectiveness of the model with real-time adaptation using response theory combined with machine learning algorithms based on individual learner profiles in dynamic assessments to ensure fairness. Empirical analyses revealed strong predictability of learner scores alongside low error margins and high satisfaction across various demographic and psychological test conditions. The framework was efficient, scalable, and generalizable to many digital learning platforms with low latency.

Practical Applications

The results of this study are fully applicable to the implementation and development of adaptive testing within educational technologies. The model can be easily adapted to contemporary learning management systems, MOOCs, and institutional self-assessment tools. The model permits automated adjustments to assessments in real time, thus supporting active empowerment feedback cycles (self-assessment feedback) and empowering educators with data-driven insights. Institutions can implement this model to improve learning results, mitigate attrition, and assist in the implementation of differentiated instruction frameworks. Additionally, the architecture is freely available and developed in Python, making it easy to modify and expand within budget constraints. This is particularly useful within resource-limited educational settings and for large-scale use in MOOCs and certifiable courses.

Roadmap for Future Development

While the framework has demonstrated promising results, there are a number of opportunities for enhancement. Expanding the question bank through automated content generation will be the focus of further work, along with the application of natural language processing techniques to assist with qualitative assessments. Deeper behavioural analytics, motivational nudges, and longitudinal tracking of learner progress will be incorporated into the feedback module. The question selection techniques and learner modelling will be further enhanced by the integration of reinforcement learning agents. Furthermore, broad multilingual and cross-cultural pilot studies will be conducted to examine the system's global applicability and test its capabilities across diverse cultures. Mobile-first optimization as well as offline deployment strategies can also be investigated to ensure that adaptive testing can reach learners in remote, underserved regions. With continued development alongside pedagogical needs and technological capabilities, the proposed system seeks to become a primary framework for the future of educational assessment.

REFERENCES

- [1] Sharma P, Hannafin MJ. Scaffolding in technology-enhanced learning environments. Interactive learning environments. 2007 Apr 1;15(1):27-46. https://doi.org/10.1080/10494820600996972
- [2] Mogoui HM. Comparison of personality traits and initial maladaptive schemas of addicts and nonaddicts. International Academic Journal of Innovative Research. 2017;4(2):74-9.
- [3] Choe EM, Kern JL, Chang HH. Optimizing the use of response times for item selection in computerized adaptive testing. Journal of Educational and Behavioral Statistics. 2018 Apr;43(2):135-58. https://doi.org/10.3102/1076998617723642
- [4] Baggyalakshmi N, Keerthana A, Revathi R. Efficient Compressor Testing on Railways with A Mobile Application. Int. Acad. J. Sci. Eng. 2023;10(2):123-30. https://doi.org/10.9756/IAJSE/V10I2/IAJSE1016
- [5] Bennett RE. Formative assessment: A critical review. Assessment in education: principles, policy & practice. 2011 Feb 1;18(1):5-25. https://doi.org/10.1080/0969594X.2010.513678
- [6] Saleh, Adaptive disassembly using deep reinforcement learning using path planning communication approach. International Journal of Advances in Engineering and Emerging Technology. 2022 Sep 30;13(2):110-9.
- [7] Sette M, Tao L, Jiang N. A knowledge-driven web tutoring system framework for adaptive and assessment-driven open-source learning. In2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC) 2017 Jul 4 (Vol. 2, pp. 712-717). IEEE.https://doi.org/10.1109/COMPSAC.2017.19
- [8] Gandomkar H, Nazari S, Hosseini P, Abdolhay HA. Genome-wide assessment and characterization of simple sequence repeats (SSRs) makers for Capoeta aculeata (Valenciennes, 1844) using NGS data. International Journal of Environmental Research and Education. 2022 May 10;2(2):16-28. https://doi.org/10.70102/IJARES/V2I2/4
- [9] Nagy MT, Korom E. Measuring Scientific Reasoning of Fourth Graders: Validation of the Science-K Inventory in Paper-Based and Computer-Based Testing Environments. Journal of Baltic Science Education. 2023;22(6):1050-62.
- [10] Sayed AR, Khafagy MH, Ali M, Mohamed MH. Predict student learning styles and suitable assessment methods using click stream. Egyptian Informatics Journal. 2024 Jun 1; 26:100469. https://doi.org/10.1016/j.eij.2024.100469
- [11] Ahani M. The impact of academic motivation education on cognitive-adaptive non-adaptive, behavior-adaptive non-adaptive dimensions of motivation and academic performance of female second year high school students in Mahneshan. *Int Acad J Soc Sci.* 2016;3(1):133–8.
- [12] Gierl MJ, Shin J, Firoozi T, Lai H. Using content coding and automatic item generation to improve test security. InFrontiers in Education 2022 May 4 (Vol. 7, p. 853578). Frontiers Media SA. https://doi.org/10.3389/feduc.2022.853578
- [13] Wang P, Liu H, Xu M. An adaptive testing item selection strategy via a deep reinforcement learning approach. Behavior Research Methods. 2024 Dec;56(8):8695-714.
- [14] Liu Y, Zhang T, Wang X, Yu G, Li T. New development of cognitive diagnosis models. Frontiers of Computer Science. 2023 Feb;17(1):171604.
- [15] Chalmers RP. Generating adaptive and non-adaptive test interfaces for multidimensional item response theory applications. Journal of Statistical Software. 2016 Jul 27; 71:1-38. https://doi.org/10.18637/jss.v071.i05
- [16] Song X, Li J, Cai T, Yang S, Yang T, Liu C. A survey on deep learning based knowledge tracing. Knowledge-Based Systems. 2022 Dec 22; 258:110036. https://doi.org/10.1016/j.knosys.2022.110036

- [17] Sharma R, Shrivastava SS, Sharma A. Predicting Student Performance Using Educational Data Mining and Learning Analytics Technique. Journal of Intelligent Systems and Internet of Things. 2023 Jan 1;10(2):24-37.
- [18] Lavanya B, Madhuri JN, Pagidipati B, Mythili M, Thiyagarajan K. Adaptive Testing with Machine Learning: Customizing English Proficiency Assessments Based on Learner Performance. In2024 International Conference on Communication, Control, and Intelligent Systems (CCIS) 2024 Dec 6 (pp. 1-5). IEEE. https://doi.org/10.1109/CCIS63231.2024.10931968
- [19] Dimitrijević N, Zdravković N, Ponnusamy V. Learning data visualization in Python utilizing an autograding and feedback system. *eLearning*. 2024; 51(1):51-61.
- [20] Van der Linden WJ, Glas CA, editors. Elements of adaptive testing. New York: Springer; 2010 Mar 10.
- [21] Pardos ZA, Heffernan NT. KT-IDEM: Introducing item difficulty to the knowledge tracing model. InInternational conference on user modeling, adaptation, and personalization 2011 Jul 11 (pp. 243-254). Berlin, Heidelberg: Springer Berlin Heidelberg.
- [22] Wauters K, Desmet P, Van Den Noortgate W. Adaptive item-based learning environments based on the item response theory: Possibilities and challenges. Journal of Computer Assisted Learning. 2010 Dec;26(6):549-62.
- [23] De-Marcos L, Hilera JR, Barchino R, Jiménez L, Martínez JJ, Gutiérrez JA, Gutiérrez JM, Otón S. An experiment for improving students' performance in secondary and tertiary education by means of m-learning auto-assessment. Computers & Education. 2010 Nov 1;55(3):1069-79. https://doi.org/10.1016/j.compedu.2010.05.003
- [24] Valero-Ramon Z, Fernandez-Llatas C, Valdivieso B, Traver V. Dynamic models supporting personalised chronic disease management through healthcare sensors with interactive process mining. Sensors. 2020 Sep 17;20(18):5330. https://doi.org/10.3390/s20185330
- [25] Benedik E, Gruber A. Rethinking Education: Unleashing the Power of Digital Innovation-Paradigm Shift in Examination Culture-Digital Media and Innovative Forms of Examination. InINTED2024 Proceedings 2024 (pp. 854-860). IATED. https://doi.org/10.21125/inted.2024.0289